基于稀疏贝叶斯学习的大规模MIMO-OFDM系统信道估计

Hayder Al-Salihi, M. R. Nakhai, T. Le
{"title":"基于稀疏贝叶斯学习的大规模MIMO-OFDM系统信道估计","authors":"Hayder Al-Salihi, M. R. Nakhai, T. Le","doi":"10.1109/EuCNC.2017.7980703","DOIUrl":null,"url":null,"abstract":"Pilot contamination limits the potential benefits of massive multiple input multiple output (MIMO) systems. To mitigate pilot contamination, in this paper, an efficient channel estimation approach is proposed for massive MIMO systems, using sparse Bayesian learning (SBL) namely coupled hierarchical Gaussian framework where the sparsity of each coefficient is controlled by its own hyperparameter and the hyperparameters of its immediate neighbours. The simulation results show that the proposed method can reconstruct original channel coefficients more effectively compared to the conventional channel estimators in terms of channel estimation accuracy in the presence of pilot contamination.","PeriodicalId":6626,"journal":{"name":"2017 European Conference on Networks and Communications (EuCNC)","volume":"53 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enhanced sparse Bayesian learning-based channel estimation for massive MIMO-OFDM systems\",\"authors\":\"Hayder Al-Salihi, M. R. Nakhai, T. Le\",\"doi\":\"10.1109/EuCNC.2017.7980703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pilot contamination limits the potential benefits of massive multiple input multiple output (MIMO) systems. To mitigate pilot contamination, in this paper, an efficient channel estimation approach is proposed for massive MIMO systems, using sparse Bayesian learning (SBL) namely coupled hierarchical Gaussian framework where the sparsity of each coefficient is controlled by its own hyperparameter and the hyperparameters of its immediate neighbours. The simulation results show that the proposed method can reconstruct original channel coefficients more effectively compared to the conventional channel estimators in terms of channel estimation accuracy in the presence of pilot contamination.\",\"PeriodicalId\":6626,\"journal\":{\"name\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"volume\":\"53 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC.2017.7980703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Conference on Networks and Communications (EuCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuCNC.2017.7980703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

导频污染限制了大规模多输入多输出(MIMO)系统的潜在效益。仿真结果表明,在存在导频污染的情况下,与传统的信道估计器相比,该方法可以更有效地重建原始信道系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced sparse Bayesian learning-based channel estimation for massive MIMO-OFDM systems
Pilot contamination limits the potential benefits of massive multiple input multiple output (MIMO) systems. To mitigate pilot contamination, in this paper, an efficient channel estimation approach is proposed for massive MIMO systems, using sparse Bayesian learning (SBL) namely coupled hierarchical Gaussian framework where the sparsity of each coefficient is controlled by its own hyperparameter and the hyperparameters of its immediate neighbours. The simulation results show that the proposed method can reconstruct original channel coefficients more effectively compared to the conventional channel estimators in terms of channel estimation accuracy in the presence of pilot contamination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lousy processing increases energy efficiency in massive MIMO systems Link performance evaluation for mm-Wave systems Internet of skills, where robotics meets AI, 5G and the Tactile Internet Vehicle clustering for improving enhanced LTE-V2X network performance Silicon area of FBMC receivers for CMOS 65nm and comparison to OFDM receivers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1