{"title":"原行星吸积盘中垂直剪切不稳定的最小模型","authors":"R. Yellin-Bergovoy, O. Umurhan, E. Heifetz","doi":"10.1080/03091929.2021.1941921","DOIUrl":null,"url":null,"abstract":"The vertical shear instability is an axisymmetric effect suggested to drive turbulence in the magnetically inactive zones of protoplanetary accretion disks. Here we examine its physical mechanism in analytically tractable “minimal models” in three settings that include a uniform density fluid, a stratified atmosphere, and a shearing-box section of a protoplanetary disk. Each of these analyses show that the vertical shear instability's essence is similar to the slantwise convective symmetric instability in the mid-latitude Earth atmosphere, in the presence of vertical shear of the baroclinic jet stream, as well as mixing in the top layers of the Gulf Stream. We show that in order to obtain instability, the fluid parcels' slope should exceed the slope of the mean absolute momentum in the disk radial-vertical plane. We provide a detailed and mutually self-consistent physical explanation from three perspectives: in terms of angular momentum conservation, as a dynamical interplay between a fluid's radial and azimuthal vorticity components, and from an energy perspective involving a generalised Solberg-Høiland Rayleigh condition. Furthermore, we explain why anelastic dynamics yields oscillatory unstable modes and isolate the oscillation mechanism from the instability one.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"26 1","pages":"674 - 695"},"PeriodicalIF":1.1000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A minimal model for vertical shear instability in protoplanetary accretion disks\",\"authors\":\"R. Yellin-Bergovoy, O. Umurhan, E. Heifetz\",\"doi\":\"10.1080/03091929.2021.1941921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vertical shear instability is an axisymmetric effect suggested to drive turbulence in the magnetically inactive zones of protoplanetary accretion disks. Here we examine its physical mechanism in analytically tractable “minimal models” in three settings that include a uniform density fluid, a stratified atmosphere, and a shearing-box section of a protoplanetary disk. Each of these analyses show that the vertical shear instability's essence is similar to the slantwise convective symmetric instability in the mid-latitude Earth atmosphere, in the presence of vertical shear of the baroclinic jet stream, as well as mixing in the top layers of the Gulf Stream. We show that in order to obtain instability, the fluid parcels' slope should exceed the slope of the mean absolute momentum in the disk radial-vertical plane. We provide a detailed and mutually self-consistent physical explanation from three perspectives: in terms of angular momentum conservation, as a dynamical interplay between a fluid's radial and azimuthal vorticity components, and from an energy perspective involving a generalised Solberg-Høiland Rayleigh condition. Furthermore, we explain why anelastic dynamics yields oscillatory unstable modes and isolate the oscillation mechanism from the instability one.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"26 1\",\"pages\":\"674 - 695\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2021.1941921\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2021.1941921","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A minimal model for vertical shear instability in protoplanetary accretion disks
The vertical shear instability is an axisymmetric effect suggested to drive turbulence in the magnetically inactive zones of protoplanetary accretion disks. Here we examine its physical mechanism in analytically tractable “minimal models” in three settings that include a uniform density fluid, a stratified atmosphere, and a shearing-box section of a protoplanetary disk. Each of these analyses show that the vertical shear instability's essence is similar to the slantwise convective symmetric instability in the mid-latitude Earth atmosphere, in the presence of vertical shear of the baroclinic jet stream, as well as mixing in the top layers of the Gulf Stream. We show that in order to obtain instability, the fluid parcels' slope should exceed the slope of the mean absolute momentum in the disk radial-vertical plane. We provide a detailed and mutually self-consistent physical explanation from three perspectives: in terms of angular momentum conservation, as a dynamical interplay between a fluid's radial and azimuthal vorticity components, and from an energy perspective involving a generalised Solberg-Høiland Rayleigh condition. Furthermore, we explain why anelastic dynamics yields oscillatory unstable modes and isolate the oscillation mechanism from the instability one.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.