{"title":"基于双特征提取混合深度学习方法的遥感图像场景分类","authors":"Akey Sungheetha, R. RajeshSharma","doi":"10.36548/JITDW.2021.2.006","DOIUrl":null,"url":null,"abstract":"Over the last decade, remote sensing technology has advanced dramatically, resulting in significant improvements on image quality, data volume, and application usage. These images have essential applications since they can help with quick and easy interpretation. Many standard detection algorithms fail to accurately categorize a scene from a remote sensing image recorded from the earth. A method that uses bilinear convolution neural networks to produce a lessweighted set of models those results in better visual recognition in remote sensing images using fine-grained techniques. This proposed hybrid method is utilized to extract scene feature information in two times from remote sensing images for improved recognition. In layman's terms, these features are defined as raw, and only have a single defined frame, so they will allow basic recognition from remote sensing images. This research work has proposed a double feature extraction hybrid deep learning approach to classify remotely sensed image scenes based on feature abstraction techniques. Also, the proposed algorithm is applied to feature values in order to convert them to feature vectors that have pure black and white values after many product operations. The next stage is pooling and normalization, which occurs after the CNN feature extraction process has changed. This research work has developed a novel hybrid framework method that has a better level of accuracy and recognition rate than any prior model.","PeriodicalId":11075,"journal":{"name":"Day 1 Mon, June 28, 2021","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Classification of Remote Sensing Image Scenes Using Double Feature Extraction Hybrid Deep Learning Approach\",\"authors\":\"Akey Sungheetha, R. RajeshSharma\",\"doi\":\"10.36548/JITDW.2021.2.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last decade, remote sensing technology has advanced dramatically, resulting in significant improvements on image quality, data volume, and application usage. These images have essential applications since they can help with quick and easy interpretation. Many standard detection algorithms fail to accurately categorize a scene from a remote sensing image recorded from the earth. A method that uses bilinear convolution neural networks to produce a lessweighted set of models those results in better visual recognition in remote sensing images using fine-grained techniques. This proposed hybrid method is utilized to extract scene feature information in two times from remote sensing images for improved recognition. In layman's terms, these features are defined as raw, and only have a single defined frame, so they will allow basic recognition from remote sensing images. This research work has proposed a double feature extraction hybrid deep learning approach to classify remotely sensed image scenes based on feature abstraction techniques. Also, the proposed algorithm is applied to feature values in order to convert them to feature vectors that have pure black and white values after many product operations. The next stage is pooling and normalization, which occurs after the CNN feature extraction process has changed. This research work has developed a novel hybrid framework method that has a better level of accuracy and recognition rate than any prior model.\",\"PeriodicalId\":11075,\"journal\":{\"name\":\"Day 1 Mon, June 28, 2021\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, June 28, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/JITDW.2021.2.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, June 28, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/JITDW.2021.2.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of Remote Sensing Image Scenes Using Double Feature Extraction Hybrid Deep Learning Approach
Over the last decade, remote sensing technology has advanced dramatically, resulting in significant improvements on image quality, data volume, and application usage. These images have essential applications since they can help with quick and easy interpretation. Many standard detection algorithms fail to accurately categorize a scene from a remote sensing image recorded from the earth. A method that uses bilinear convolution neural networks to produce a lessweighted set of models those results in better visual recognition in remote sensing images using fine-grained techniques. This proposed hybrid method is utilized to extract scene feature information in two times from remote sensing images for improved recognition. In layman's terms, these features are defined as raw, and only have a single defined frame, so they will allow basic recognition from remote sensing images. This research work has proposed a double feature extraction hybrid deep learning approach to classify remotely sensed image scenes based on feature abstraction techniques. Also, the proposed algorithm is applied to feature values in order to convert them to feature vectors that have pure black and white values after many product operations. The next stage is pooling and normalization, which occurs after the CNN feature extraction process has changed. This research work has developed a novel hybrid framework method that has a better level of accuracy and recognition rate than any prior model.