{"title":"CdPS3低温相和室温相的第一性原理LCAO研究","authors":"A. Kuzmin","doi":"10.1063/10.0002477","DOIUrl":null,"url":null,"abstract":"The electronic and atomic structure of a bulk 2D layered van-der-Waals compound CdPS3 was studied in the low (R3) and room (C2/m) temperature phases using first-principles calculations within the periodic linear combination of atomic orbitals method with hybrid meta exchange-correlation M06 functional. The calculation results reproduce well the experimental crystallographic parameters. The value of the indirect band gap Eg=3.4 eV for the room-temperature monoclinic C2/m phase is close to the experimental one, while the indirect band gap Eg=3.3 eV was predicted for the low-temperature trigonal R3 phase. The effect of hydrostatic pressure on the band gap in both phases was studied in the pressure range from 0 to 40 GPa. In both cases, the pressure dependence of the band gap passes through a maximum, but at different pressures. In the R3 phase, the band gap reaches its maximum value of ~4 eV at ~30 GPa, whereas in the C2/m phase, the maximum value of ~3.6 eV is reached already at ~8 GPa.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"First-principles LCAO study of the low- and room-temperature phases of CdPS3\",\"authors\":\"A. Kuzmin\",\"doi\":\"10.1063/10.0002477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electronic and atomic structure of a bulk 2D layered van-der-Waals compound CdPS3 was studied in the low (R3) and room (C2/m) temperature phases using first-principles calculations within the periodic linear combination of atomic orbitals method with hybrid meta exchange-correlation M06 functional. The calculation results reproduce well the experimental crystallographic parameters. The value of the indirect band gap Eg=3.4 eV for the room-temperature monoclinic C2/m phase is close to the experimental one, while the indirect band gap Eg=3.3 eV was predicted for the low-temperature trigonal R3 phase. The effect of hydrostatic pressure on the band gap in both phases was studied in the pressure range from 0 to 40 GPa. In both cases, the pressure dependence of the band gap passes through a maximum, but at different pressures. In the R3 phase, the band gap reaches its maximum value of ~4 eV at ~30 GPa, whereas in the C2/m phase, the maximum value of ~3.6 eV is reached already at ~8 GPa.\",\"PeriodicalId\":8467,\"journal\":{\"name\":\"arXiv: Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0002477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/10.0002477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First-principles LCAO study of the low- and room-temperature phases of CdPS3
The electronic and atomic structure of a bulk 2D layered van-der-Waals compound CdPS3 was studied in the low (R3) and room (C2/m) temperature phases using first-principles calculations within the periodic linear combination of atomic orbitals method with hybrid meta exchange-correlation M06 functional. The calculation results reproduce well the experimental crystallographic parameters. The value of the indirect band gap Eg=3.4 eV for the room-temperature monoclinic C2/m phase is close to the experimental one, while the indirect band gap Eg=3.3 eV was predicted for the low-temperature trigonal R3 phase. The effect of hydrostatic pressure on the band gap in both phases was studied in the pressure range from 0 to 40 GPa. In both cases, the pressure dependence of the band gap passes through a maximum, but at different pressures. In the R3 phase, the band gap reaches its maximum value of ~4 eV at ~30 GPa, whereas in the C2/m phase, the maximum value of ~3.6 eV is reached already at ~8 GPa.