基于模糊神经网络的葡萄叶片病害识别

Reva Nagi, S. S. Tripathy
{"title":"基于模糊神经网络的葡萄叶片病害识别","authors":"Reva Nagi, S. S. Tripathy","doi":"10.1109/AISP53593.2022.9760547","DOIUrl":null,"url":null,"abstract":"Reliable and accurate identification of disease is required for protecting the plant from pathogens and obviating the yield loss. The advent of computer vision and image processing techniques has encouraged contribution in disease identification systems in plants. This paper proposes a fuzzy feature extraction technique and Probabilistic Neural Network (PNN) for the identification of grapevine diseases using leaf images. The color features are extracted using fuzzy color histogram. Then, the extracted features are fed to a PNN classifier for grapevine disease classification. The proposed technique achieves a maximum recognition accuracy of 95.54% on the test dataset. On comparing the proposed system with upcoming deep learning techniques, the former is found to be more efficient for small training data.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disease identification in grapevine leaf images using fuzzy-PNN\",\"authors\":\"Reva Nagi, S. S. Tripathy\",\"doi\":\"10.1109/AISP53593.2022.9760547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable and accurate identification of disease is required for protecting the plant from pathogens and obviating the yield loss. The advent of computer vision and image processing techniques has encouraged contribution in disease identification systems in plants. This paper proposes a fuzzy feature extraction technique and Probabilistic Neural Network (PNN) for the identification of grapevine diseases using leaf images. The color features are extracted using fuzzy color histogram. Then, the extracted features are fed to a PNN classifier for grapevine disease classification. The proposed technique achieves a maximum recognition accuracy of 95.54% on the test dataset. On comparing the proposed system with upcoming deep learning techniques, the former is found to be more efficient for small training data.\",\"PeriodicalId\":6793,\"journal\":{\"name\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP53593.2022.9760547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可靠和准确的病害鉴定是保护植物免受病原菌侵害和避免产量损失的必要条件。计算机视觉和图像处理技术的出现鼓励了对植物疾病识别系统的贡献。本文提出了一种基于模糊特征提取技术和概率神经网络(PNN)的葡萄叶片病害识别方法。使用模糊颜色直方图提取颜色特征。然后,将提取的特征输入到PNN分类器中进行葡萄病害分类。该方法在测试数据集上的识别准确率达到95.54%。将所提出的系统与即将到来的深度学习技术进行比较,发现前者对于小型训练数据更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disease identification in grapevine leaf images using fuzzy-PNN
Reliable and accurate identification of disease is required for protecting the plant from pathogens and obviating the yield loss. The advent of computer vision and image processing techniques has encouraged contribution in disease identification systems in plants. This paper proposes a fuzzy feature extraction technique and Probabilistic Neural Network (PNN) for the identification of grapevine diseases using leaf images. The color features are extracted using fuzzy color histogram. Then, the extracted features are fed to a PNN classifier for grapevine disease classification. The proposed technique achieves a maximum recognition accuracy of 95.54% on the test dataset. On comparing the proposed system with upcoming deep learning techniques, the former is found to be more efficient for small training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 5.80 GHz Harmonic Suppression Antenna for Wireless Energy Transfer Application Crack identification from concrete structure images using deep transfer learning Energy Efficient VoD with Cache in TWDM PON ring Blockchain-based IoT Device Security A New Dynamic Method of Multiprocessor Scheduling using Modified Crow Search Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1