{"title":"外场方向对反铁电方酸H2C4O4极化旋转的影响","authors":"A. Moina","doi":"10.5488/CMP.24.43703","DOIUrl":null,"url":null,"abstract":"Using the previously developed model we explore the processes of polarization rotation in antiferroelectric crystals of squaric acid by the electric fields directed arbitrarily within the ac plane. Except for some particular directions of the field, the two-step polarization reorientation at low temperatures is predicted: first, to the noncollinear phase with perpendicular sublattice polarizations and then to the collinear ferroelectric phase. However, when the field is directed along the axis of spontaneous sublattice polarizations, the intermediate noncollinear phase is absent; when the field is at 45° to this axis, the field for transition to the ferroelectric phase tends to infinity. The ground state proton configurations and the directions of the sublattice polarization vectors are determined for all field orientations. The T-E phase diagrams are constructed for the fields directed along the diagonals of the ac plane and for the above discussed particular directions of the field.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"37 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of external field direction on polarization rotation in antiferroelectric squaric acid H2C4O4\",\"authors\":\"A. Moina\",\"doi\":\"10.5488/CMP.24.43703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the previously developed model we explore the processes of polarization rotation in antiferroelectric crystals of squaric acid by the electric fields directed arbitrarily within the ac plane. Except for some particular directions of the field, the two-step polarization reorientation at low temperatures is predicted: first, to the noncollinear phase with perpendicular sublattice polarizations and then to the collinear ferroelectric phase. However, when the field is directed along the axis of spontaneous sublattice polarizations, the intermediate noncollinear phase is absent; when the field is at 45° to this axis, the field for transition to the ferroelectric phase tends to infinity. The ground state proton configurations and the directions of the sublattice polarization vectors are determined for all field orientations. The T-E phase diagrams are constructed for the fields directed along the diagonals of the ac plane and for the above discussed particular directions of the field.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.24.43703\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.24.43703","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Influence of external field direction on polarization rotation in antiferroelectric squaric acid H2C4O4
Using the previously developed model we explore the processes of polarization rotation in antiferroelectric crystals of squaric acid by the electric fields directed arbitrarily within the ac plane. Except for some particular directions of the field, the two-step polarization reorientation at low temperatures is predicted: first, to the noncollinear phase with perpendicular sublattice polarizations and then to the collinear ferroelectric phase. However, when the field is directed along the axis of spontaneous sublattice polarizations, the intermediate noncollinear phase is absent; when the field is at 45° to this axis, the field for transition to the ferroelectric phase tends to infinity. The ground state proton configurations and the directions of the sublattice polarization vectors are determined for all field orientations. The T-E phase diagrams are constructed for the fields directed along the diagonals of the ac plane and for the above discussed particular directions of the field.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.