{"title":"局部最小二乘蒙特卡罗风险管理","authors":"Donatien Hainaut, Adnane Akbaraly","doi":"10.1017/asb.2023.25","DOIUrl":null,"url":null,"abstract":"Abstract The least squares Monte Carlo method has become a standard approach in the insurance and financial industries for evaluating a company’s exposure to market risk. However, the non-linear regression of simulated responses on risk factors poses a challenge in this procedure. This article presents a novel approach to address this issue by employing an a-priori segmentation of responses. Using a K-means algorithm, we identify clusters of responses that are then locally regressed on their corresponding risk factors. The global regression function is obtained by combining the local models with logistic regression. We demonstrate the effectiveness of the proposed local least squares Monte Carlo method through two case studies. The first case study investigates butterfly and bull trap options within a Heston stochastic volatility model, while the second case study examines the exposure to risks in a participating life insurance scenario.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk management with local least squares Monte Carlo\",\"authors\":\"Donatien Hainaut, Adnane Akbaraly\",\"doi\":\"10.1017/asb.2023.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The least squares Monte Carlo method has become a standard approach in the insurance and financial industries for evaluating a company’s exposure to market risk. However, the non-linear regression of simulated responses on risk factors poses a challenge in this procedure. This article presents a novel approach to address this issue by employing an a-priori segmentation of responses. Using a K-means algorithm, we identify clusters of responses that are then locally regressed on their corresponding risk factors. The global regression function is obtained by combining the local models with logistic regression. We demonstrate the effectiveness of the proposed local least squares Monte Carlo method through two case studies. The first case study investigates butterfly and bull trap options within a Heston stochastic volatility model, while the second case study examines the exposure to risks in a participating life insurance scenario.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/asb.2023.25\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2023.25","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Risk management with local least squares Monte Carlo
Abstract The least squares Monte Carlo method has become a standard approach in the insurance and financial industries for evaluating a company’s exposure to market risk. However, the non-linear regression of simulated responses on risk factors poses a challenge in this procedure. This article presents a novel approach to address this issue by employing an a-priori segmentation of responses. Using a K-means algorithm, we identify clusters of responses that are then locally regressed on their corresponding risk factors. The global regression function is obtained by combining the local models with logistic regression. We demonstrate the effectiveness of the proposed local least squares Monte Carlo method through two case studies. The first case study investigates butterfly and bull trap options within a Heston stochastic volatility model, while the second case study examines the exposure to risks in a participating life insurance scenario.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.