纳米晶粉末混合物WC-6wt制备硬质合金的显微组织和相组成。%Co添加C, Al和ZrC

S. V. Briakunov, A. Kurlov
{"title":"纳米晶粉末混合物WC-6wt制备硬质合金的显微组织和相组成。%Co添加C, Al和ZrC","authors":"S. V. Briakunov, A. Kurlov","doi":"10.17073/1997-308x-2023-1-49-62","DOIUrl":null,"url":null,"abstract":"A large specific surface area of WC nanopowder determines its high chemical activity and makes it very sensitive to various impurities, among which oxygen is most harmful and unavoidable. During heating, oxygen interacts with carbon of WC being removed in the form of CO/CO2, which finally leads to the appearance of embrittling η-phases in the hard alloy, abnormal growth of WC grains, and formation of a porous microstructure. To prevent heavy decarburization of WC during vacuum sintering of hard alloy from a nanocrystalline powder mixture WC-6wt.%Co, in this work we compared three methods: addition of extra carbon to compensate for carbon loss as a result of decarburization; addition of Al to bind impurity oxygen into Al2O3 before it interacts with carbon of WC; and addition of ZrC to compensate for carbon loss and bind impurity oxygen into ZrO2. Nanocrystalline powder mixtures based on WC-6 wt.%Co with and without additions of C, Al, and ZrC were prepared from microcrystalline powders of WC, Co, Al, ZrC, and carbon black by high-energy milling, then they were compacted in a cylindrical mold by uniaxial pressing at a pressure of ~460 MPa and sintered in graphite crucibles for 15 min at 1380 °C in vacuum of ~10-2 Pa. The heating rate to the temperature of sintering was 10 °C/min. The initial powders, powder mixtures prepared therefrom, and sintered hard alloys were certified using X-ray diffraction, chemical analysis, scanning electron microscopy, BET adsorption method, helium pycnometry, and Vickers method. The studies performed showed that the average particle size in all the prepared powder mixtures does not exceed 100 nm, and the content of impurity oxygen in them varies from 3.3 to 4.3 wt.% depending on the additives. It was established that only a part of oxygen contained in the powder mixtures is in the chemisorbed state and takes part in the decarburization of WC during vacuum sintering. The Al additive is completely oxidized during milling of the powder mixture and transforms into nanocrystalline Al2O3, which only aggravates carbon loss during sintering and results in the formation of a multiphase and relatively porous microstructure of the hard alloy. On the contrary, using carbon and ZrC additives we managed to prevent the decarburization of WC during sintering of the hard alloy and to form a less porous microstructure in it. It was shown that the presence of ZrO2 inclusions does not impede intensive growth of WC grains during sintering, but rather promotes it. Carbon deficit slightly suppresses intensive WC grain growth during sintering of hard alloy leading to the formation of η-phases and to an increase in the density and microhardness, but the presence of oxide inclusions Al2O3 and ZrO2 in the microstructure reduces the values of these properties.","PeriodicalId":14561,"journal":{"name":"Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universitiesʹ Proceedings. Powder Metallurgy аnd Functional Coatings)","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and phase composition of hard alloys produced from nanocrystalline powder mixture WC-6wt.%Co with C, Al and ZrC additives\",\"authors\":\"S. V. Briakunov, A. Kurlov\",\"doi\":\"10.17073/1997-308x-2023-1-49-62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large specific surface area of WC nanopowder determines its high chemical activity and makes it very sensitive to various impurities, among which oxygen is most harmful and unavoidable. During heating, oxygen interacts with carbon of WC being removed in the form of CO/CO2, which finally leads to the appearance of embrittling η-phases in the hard alloy, abnormal growth of WC grains, and formation of a porous microstructure. To prevent heavy decarburization of WC during vacuum sintering of hard alloy from a nanocrystalline powder mixture WC-6wt.%Co, in this work we compared three methods: addition of extra carbon to compensate for carbon loss as a result of decarburization; addition of Al to bind impurity oxygen into Al2O3 before it interacts with carbon of WC; and addition of ZrC to compensate for carbon loss and bind impurity oxygen into ZrO2. Nanocrystalline powder mixtures based on WC-6 wt.%Co with and without additions of C, Al, and ZrC were prepared from microcrystalline powders of WC, Co, Al, ZrC, and carbon black by high-energy milling, then they were compacted in a cylindrical mold by uniaxial pressing at a pressure of ~460 MPa and sintered in graphite crucibles for 15 min at 1380 °C in vacuum of ~10-2 Pa. The heating rate to the temperature of sintering was 10 °C/min. The initial powders, powder mixtures prepared therefrom, and sintered hard alloys were certified using X-ray diffraction, chemical analysis, scanning electron microscopy, BET adsorption method, helium pycnometry, and Vickers method. The studies performed showed that the average particle size in all the prepared powder mixtures does not exceed 100 nm, and the content of impurity oxygen in them varies from 3.3 to 4.3 wt.% depending on the additives. It was established that only a part of oxygen contained in the powder mixtures is in the chemisorbed state and takes part in the decarburization of WC during vacuum sintering. The Al additive is completely oxidized during milling of the powder mixture and transforms into nanocrystalline Al2O3, which only aggravates carbon loss during sintering and results in the formation of a multiphase and relatively porous microstructure of the hard alloy. On the contrary, using carbon and ZrC additives we managed to prevent the decarburization of WC during sintering of the hard alloy and to form a less porous microstructure in it. It was shown that the presence of ZrO2 inclusions does not impede intensive growth of WC grains during sintering, but rather promotes it. Carbon deficit slightly suppresses intensive WC grain growth during sintering of hard alloy leading to the formation of η-phases and to an increase in the density and microhardness, but the presence of oxide inclusions Al2O3 and ZrO2 in the microstructure reduces the values of these properties.\",\"PeriodicalId\":14561,\"journal\":{\"name\":\"Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universitiesʹ Proceedings. Powder Metallurgy аnd Functional Coatings)\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universitiesʹ Proceedings. Powder Metallurgy аnd Functional Coatings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17073/1997-308x-2023-1-49-62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universitiesʹ Proceedings. Powder Metallurgy аnd Functional Coatings)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/1997-308x-2023-1-49-62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

WC纳米粉的大比表面积决定了其高的化学活性,使其对各种杂质非常敏感,其中氧是最有害的,也是不可避免的。在加热过程中,氧与WC中的碳相互作用,以CO/CO2的形式析出,最终导致硬质合金中出现脆化的η相,WC晶粒异常长大,形成多孔组织。为了防止纳米晶粉末混合物WC-6wt硬质合金真空烧结过程中WC的严重脱碳。在这项工作中,我们比较了三种方法:添加额外的碳来补偿由于脱碳而造成的碳损失;在Al2O3与WC的碳相互作用之前,加入Al将杂质氧结合到Al2O3中;添加ZrC补偿碳损失,并将杂质氧结合到ZrO2中。以WC、Co、Al、ZrC和炭黑微晶粉末为原料,采用高能铣削法制备了WC- 6wt .%Co、添加C、Al和ZrC的纳米晶混合粉末,在~460 MPa的单轴压力下在圆柱形模具中压实,在1380℃、~10-2 Pa的真空条件下在石墨坩埚中烧结15 min。升温速率为10℃/min,达到烧结温度。采用x射线衍射、化学分析、扫描电镜、BET吸附法、氦比容法和维氏法对初始粉末、粉末混合物和烧结硬质合金进行了鉴定。研究表明,所制备的粉末混合物的平均粒径不超过100 nm,杂质氧含量根据添加剂的不同在3.3 ~ 4.3 wt.%之间变化。结果表明,在真空烧结过程中,粉末混合物中只有一部分氧处于化学吸附状态,参与WC的脱碳。Al添加剂在粉末混合物的铣削过程中被完全氧化,转变为纳米晶Al2O3,这只会加剧烧结过程中的碳损失,导致硬质合金形成多相和相对多孔的组织。相反,使用碳和ZrC添加剂,我们成功地阻止了硬质合金烧结过程中WC的脱碳,并在其中形成了较少的多孔组织。结果表明,在烧结过程中,ZrO2夹杂物的存在不仅不会阻碍WC晶粒的密集生长,反而会促进WC晶粒的密集生长。在硬质合金烧结过程中,碳亏略抑制WC晶粒的强烈生长,导致η相的形成和密度和显微硬度的提高,但微观组织中氧化夹杂Al2O3和ZrO2的存在降低了这些性能的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure and phase composition of hard alloys produced from nanocrystalline powder mixture WC-6wt.%Co with C, Al and ZrC additives
A large specific surface area of WC nanopowder determines its high chemical activity and makes it very sensitive to various impurities, among which oxygen is most harmful and unavoidable. During heating, oxygen interacts with carbon of WC being removed in the form of CO/CO2, which finally leads to the appearance of embrittling η-phases in the hard alloy, abnormal growth of WC grains, and formation of a porous microstructure. To prevent heavy decarburization of WC during vacuum sintering of hard alloy from a nanocrystalline powder mixture WC-6wt.%Co, in this work we compared three methods: addition of extra carbon to compensate for carbon loss as a result of decarburization; addition of Al to bind impurity oxygen into Al2O3 before it interacts with carbon of WC; and addition of ZrC to compensate for carbon loss and bind impurity oxygen into ZrO2. Nanocrystalline powder mixtures based on WC-6 wt.%Co with and without additions of C, Al, and ZrC were prepared from microcrystalline powders of WC, Co, Al, ZrC, and carbon black by high-energy milling, then they were compacted in a cylindrical mold by uniaxial pressing at a pressure of ~460 MPa and sintered in graphite crucibles for 15 min at 1380 °C in vacuum of ~10-2 Pa. The heating rate to the temperature of sintering was 10 °C/min. The initial powders, powder mixtures prepared therefrom, and sintered hard alloys were certified using X-ray diffraction, chemical analysis, scanning electron microscopy, BET adsorption method, helium pycnometry, and Vickers method. The studies performed showed that the average particle size in all the prepared powder mixtures does not exceed 100 nm, and the content of impurity oxygen in them varies from 3.3 to 4.3 wt.% depending on the additives. It was established that only a part of oxygen contained in the powder mixtures is in the chemisorbed state and takes part in the decarburization of WC during vacuum sintering. The Al additive is completely oxidized during milling of the powder mixture and transforms into nanocrystalline Al2O3, which only aggravates carbon loss during sintering and results in the formation of a multiphase and relatively porous microstructure of the hard alloy. On the contrary, using carbon and ZrC additives we managed to prevent the decarburization of WC during sintering of the hard alloy and to form a less porous microstructure in it. It was shown that the presence of ZrO2 inclusions does not impede intensive growth of WC grains during sintering, but rather promotes it. Carbon deficit slightly suppresses intensive WC grain growth during sintering of hard alloy leading to the formation of η-phases and to an increase in the density and microhardness, but the presence of oxide inclusions Al2O3 and ZrO2 in the microstructure reduces the values of these properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative analysis of the tool life of submicron hard alloy WC-10Co sintered from powder obtained by electro discharge in oil SHS of cast materials in the Mo-Al-C system Microstructure and phase composition of hard alloys produced from nanocrystalline powder mixture WC-6wt.%Co with C, Al and ZrC additives The influence of Ni on the composition, structure and properties of Ti-Cr-N coatings Fabrication of (Ti-Al-Si)/(Ti-C)/Ti – layered alloy by SHS pressing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1