{"title":"基于学习篮子耦合和正/负反馈的交互式顺序篮子推荐","authors":"Wei Wang, Longbing Cao","doi":"10.1145/3444368","DOIUrl":null,"url":null,"abstract":"Sequential recommendation, such as next-basket recommender systems (NBRS), which model users’ sequential behaviors and the relevant context/session, has recently attracted much attention from the research community. Existing session-based NBRS involve session representation and inter-basket relations but ignore their hybrid couplings with the intra-basket items, often producing irrelevant or similar items in the next basket. In addition, they do not predict next-baskets (more than one next basket recommended). Interactive recommendation further involves user feedback on the recommended basket. The existing work on next-item recommendation involves positive feedback on selected items but ignores negative feedback on unselected ones. Here, we introduce a new setting—interactive sequential basket recommendation, which iteratively predicts next baskets by learning the intra-/inter-basket couplings between items and both positive and negative user feedback on recommended baskets. A hierarchical attentive encoder-decoder model (HAEM) continuously recommends next baskets one after another during sequential interactions with users after analyzing the item relations both within a basket and between adjacent sequential baskets (i.e., intra-/inter-basket couplings) and incorporating the user selection and unselection (i.e., positive/negative) feedback on the recommended baskets to refine NBRS. HAEM comprises a basket encoder and a sequence decoder to model intra-/inter-basket couplings and a prediction decoder to sequentially predict next-baskets by interactive feedback-based refinement. Empirical analysis shows that HAEM significantly outperforms the state-of-the-art baselines for NBRS and session-based recommenders for accurate and novel recommendation. We also show the effect of continuously refining sequential basket recommendation by including unselection feedback during interactive recommendation.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"7 1","pages":"1 - 26"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Interactive Sequential Basket Recommendation by Learning Basket Couplings and Positive/Negative Feedback\",\"authors\":\"Wei Wang, Longbing Cao\",\"doi\":\"10.1145/3444368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequential recommendation, such as next-basket recommender systems (NBRS), which model users’ sequential behaviors and the relevant context/session, has recently attracted much attention from the research community. Existing session-based NBRS involve session representation and inter-basket relations but ignore their hybrid couplings with the intra-basket items, often producing irrelevant or similar items in the next basket. In addition, they do not predict next-baskets (more than one next basket recommended). Interactive recommendation further involves user feedback on the recommended basket. The existing work on next-item recommendation involves positive feedback on selected items but ignores negative feedback on unselected ones. Here, we introduce a new setting—interactive sequential basket recommendation, which iteratively predicts next baskets by learning the intra-/inter-basket couplings between items and both positive and negative user feedback on recommended baskets. A hierarchical attentive encoder-decoder model (HAEM) continuously recommends next baskets one after another during sequential interactions with users after analyzing the item relations both within a basket and between adjacent sequential baskets (i.e., intra-/inter-basket couplings) and incorporating the user selection and unselection (i.e., positive/negative) feedback on the recommended baskets to refine NBRS. HAEM comprises a basket encoder and a sequence decoder to model intra-/inter-basket couplings and a prediction decoder to sequentially predict next-baskets by interactive feedback-based refinement. Empirical analysis shows that HAEM significantly outperforms the state-of-the-art baselines for NBRS and session-based recommenders for accurate and novel recommendation. We also show the effect of continuously refining sequential basket recommendation by including unselection feedback during interactive recommendation.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"7 1\",\"pages\":\"1 - 26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interactive Sequential Basket Recommendation by Learning Basket Couplings and Positive/Negative Feedback
Sequential recommendation, such as next-basket recommender systems (NBRS), which model users’ sequential behaviors and the relevant context/session, has recently attracted much attention from the research community. Existing session-based NBRS involve session representation and inter-basket relations but ignore their hybrid couplings with the intra-basket items, often producing irrelevant or similar items in the next basket. In addition, they do not predict next-baskets (more than one next basket recommended). Interactive recommendation further involves user feedback on the recommended basket. The existing work on next-item recommendation involves positive feedback on selected items but ignores negative feedback on unselected ones. Here, we introduce a new setting—interactive sequential basket recommendation, which iteratively predicts next baskets by learning the intra-/inter-basket couplings between items and both positive and negative user feedback on recommended baskets. A hierarchical attentive encoder-decoder model (HAEM) continuously recommends next baskets one after another during sequential interactions with users after analyzing the item relations both within a basket and between adjacent sequential baskets (i.e., intra-/inter-basket couplings) and incorporating the user selection and unselection (i.e., positive/negative) feedback on the recommended baskets to refine NBRS. HAEM comprises a basket encoder and a sequence decoder to model intra-/inter-basket couplings and a prediction decoder to sequentially predict next-baskets by interactive feedback-based refinement. Empirical analysis shows that HAEM significantly outperforms the state-of-the-art baselines for NBRS and session-based recommenders for accurate and novel recommendation. We also show the effect of continuously refining sequential basket recommendation by including unselection feedback during interactive recommendation.