心肌梗死:神经网络诊断与生命状态预测

E. Micheli-Tzanakou, C. Yi, W. Kostis, D. Shindler, J. Kostis
{"title":"心肌梗死:神经网络诊断与生命状态预测","authors":"E. Micheli-Tzanakou, C. Yi, W. Kostis, D. Shindler, J. Kostis","doi":"10.1109/CIC.1993.378462","DOIUrl":null,"url":null,"abstract":"Neural networks (NNs) have been found useful in many biomedical applications. The authors' purpose is to apply NNs to two specific problems in cardiology, namely, diagnosis of echocardiograms for myocardial infarction and prediction of vital status of patients that suffered such. The authors used NNs to discriminate between normal and infarcted myocardium, by looking at intensity changes. The intensities of selected regions are used for training and testing. In predicting the vital status of patients that have suffered acute myocardial infarction, the authors used a large database (MIDAS) with follow-ups. The NN in this case has two hidden layers with 18 patient variables from the MIDAS dataset as inputs. The NN was again trained with the feedback algorithm ALOPEX and tested with unknown data.<<ETX>>","PeriodicalId":20445,"journal":{"name":"Proceedings of Computers in Cardiology Conference","volume":"21 1","pages":"229-232"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Myocardial infarction: diagnosis and vital status prediction using neural networks\",\"authors\":\"E. Micheli-Tzanakou, C. Yi, W. Kostis, D. Shindler, J. Kostis\",\"doi\":\"10.1109/CIC.1993.378462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks (NNs) have been found useful in many biomedical applications. The authors' purpose is to apply NNs to two specific problems in cardiology, namely, diagnosis of echocardiograms for myocardial infarction and prediction of vital status of patients that suffered such. The authors used NNs to discriminate between normal and infarcted myocardium, by looking at intensity changes. The intensities of selected regions are used for training and testing. In predicting the vital status of patients that have suffered acute myocardial infarction, the authors used a large database (MIDAS) with follow-ups. The NN in this case has two hidden layers with 18 patient variables from the MIDAS dataset as inputs. The NN was again trained with the feedback algorithm ALOPEX and tested with unknown data.<<ETX>>\",\"PeriodicalId\":20445,\"journal\":{\"name\":\"Proceedings of Computers in Cardiology Conference\",\"volume\":\"21 1\",\"pages\":\"229-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Computers in Cardiology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.1993.378462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Computers in Cardiology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.1993.378462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

神经网络(NNs)已被发现在许多生物医学应用中很有用。作者的目的是将神经网络应用于心脏病学中的两个具体问题,即超声心动图对心肌梗死的诊断和心肌梗死患者生命状态的预测。作者使用神经网络通过观察强度变化来区分正常心肌和梗死心肌。选定区域的强度用于训练和测试。在预测急性心肌梗死患者的生命状态时,作者使用了一个大型数据库(MIDAS)进行随访。在这种情况下,神经网络有两个隐藏层,其中有来自MIDAS数据集的18个患者变量作为输入。再次使用反馈算法ALOPEX对神经网络进行训练,并使用未知数据进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Myocardial infarction: diagnosis and vital status prediction using neural networks
Neural networks (NNs) have been found useful in many biomedical applications. The authors' purpose is to apply NNs to two specific problems in cardiology, namely, diagnosis of echocardiograms for myocardial infarction and prediction of vital status of patients that suffered such. The authors used NNs to discriminate between normal and infarcted myocardium, by looking at intensity changes. The intensities of selected regions are used for training and testing. In predicting the vital status of patients that have suffered acute myocardial infarction, the authors used a large database (MIDAS) with follow-ups. The NN in this case has two hidden layers with 18 patient variables from the MIDAS dataset as inputs. The NN was again trained with the feedback algorithm ALOPEX and tested with unknown data.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 528 channel system for the acquisition and display of defibrillation and electrocardiographic potentials Computers: the heart of screening Signal averaging enhancement by jitter deconvolution Numerical simulation of the flow in model skeletal muscle ventricles Transmembrane potential changes during stimulation in a bidomain model of the myocardium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1