{"title":"考虑涡度演化的拉格朗日条件下粘性不可压缩流体轴对称旋流径向速度的恢复","authors":"E. Prosviryakov","doi":"10.35634/vm210311","DOIUrl":null,"url":null,"abstract":"Swirling laminar axisymmetric flows of viscous incompressible fluids in a potential field of body forces are considered. The study of flows is carried out in a cylindrical coordinate system. In the flows, the regions in which the axial derivative of the circumferential velocity cannot take on zero value in some open neighborhood (essentially swirling flows) and the regions in which this derivative is equal to zero (the region with layered swirl) are considered separately. It is shown that a well-known method (the method of viscous vortex domains) developed for non-swirling flows can be used for regions with layered swirling. For substantially swirling flows, a formula is obtained for calculating the radial-axial velocity of an imaginary fluid through the circumferential vorticity component, the circumferential circulation of a real fluid, and the partial derivatives of these functions. The particles of this imaginary fluid “transfer” vortex tubes of the radial-axial vorticity component while maintaining the intensity of these tubes, and also “transfer” the circumferential circulation and the product of the circular vorticity component by some function of the distance to the axis of symmetry. A non-integral method for reconstructing the velocity field from the vorticity field is proposed. It is reduced to solving a system of linear algebraic equations in two variables. The obtained result is proposed to be used to extend the method of viscous vortex domains to swirling axisymmetric flows.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recovery of radial-axial velocity in axisymmetric swirling flows of a viscous incompressible fluid in the Lagrangian consideration of vorticity evolution\",\"authors\":\"E. Prosviryakov\",\"doi\":\"10.35634/vm210311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Swirling laminar axisymmetric flows of viscous incompressible fluids in a potential field of body forces are considered. The study of flows is carried out in a cylindrical coordinate system. In the flows, the regions in which the axial derivative of the circumferential velocity cannot take on zero value in some open neighborhood (essentially swirling flows) and the regions in which this derivative is equal to zero (the region with layered swirl) are considered separately. It is shown that a well-known method (the method of viscous vortex domains) developed for non-swirling flows can be used for regions with layered swirling. For substantially swirling flows, a formula is obtained for calculating the radial-axial velocity of an imaginary fluid through the circumferential vorticity component, the circumferential circulation of a real fluid, and the partial derivatives of these functions. The particles of this imaginary fluid “transfer” vortex tubes of the radial-axial vorticity component while maintaining the intensity of these tubes, and also “transfer” the circumferential circulation and the product of the circular vorticity component by some function of the distance to the axis of symmetry. A non-integral method for reconstructing the velocity field from the vorticity field is proposed. It is reduced to solving a system of linear algebraic equations in two variables. The obtained result is proposed to be used to extend the method of viscous vortex domains to swirling axisymmetric flows.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm210311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm210311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recovery of radial-axial velocity in axisymmetric swirling flows of a viscous incompressible fluid in the Lagrangian consideration of vorticity evolution
Swirling laminar axisymmetric flows of viscous incompressible fluids in a potential field of body forces are considered. The study of flows is carried out in a cylindrical coordinate system. In the flows, the regions in which the axial derivative of the circumferential velocity cannot take on zero value in some open neighborhood (essentially swirling flows) and the regions in which this derivative is equal to zero (the region with layered swirl) are considered separately. It is shown that a well-known method (the method of viscous vortex domains) developed for non-swirling flows can be used for regions with layered swirling. For substantially swirling flows, a formula is obtained for calculating the radial-axial velocity of an imaginary fluid through the circumferential vorticity component, the circumferential circulation of a real fluid, and the partial derivatives of these functions. The particles of this imaginary fluid “transfer” vortex tubes of the radial-axial vorticity component while maintaining the intensity of these tubes, and also “transfer” the circumferential circulation and the product of the circular vorticity component by some function of the distance to the axis of symmetry. A non-integral method for reconstructing the velocity field from the vorticity field is proposed. It is reduced to solving a system of linear algebraic equations in two variables. The obtained result is proposed to be used to extend the method of viscous vortex domains to swirling axisymmetric flows.