基于脉冲神经模型的视网膜样视觉图像重建

Lin Zhu, Siwei Dong, Jianing Li, Tiejun Huang, Yonghong Tian
{"title":"基于脉冲神经模型的视网膜样视觉图像重建","authors":"Lin Zhu, Siwei Dong, Jianing Li, Tiejun Huang, Yonghong Tian","doi":"10.1109/cvpr42600.2020.00151","DOIUrl":null,"url":null,"abstract":"The high-sensitivity vision of primates, including humans, is mediated by a small retinal region called the fovea. As a novel bio-inspired vision sensor, spike camera mimics the fovea to record the nature scenes by continuous-time spikes instead of frame-based manner. However, reconstructing visual images from the spikes remains to be a challenge. In this paper, we design a retina-like visual image reconstruction framework, which is flexible in reconstructing full texture of natural scenes from the totally new spike data. Specifically, the proposed architecture consists of motion local excitation layer, spike refining layer and visual reconstruction layer motivated by bio-realistic leaky integrate and fire (LIF) neurons and synapse connection with spike-timing-dependent plasticity (STDP) rules. This approach may represent a major shift from conventional frame-based vision to the continuous-time retina-like vision, owning to the advantages of high temporal resolution and low power consumption. To test the performance, a spike dataset is constructed which is recorded by the spike camera. The experimental results show that the proposed approach is extremely effective in reconstructing the visual image in both normal and high speed scenes, while achieving high dynamic range and high image quality.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"14 1","pages":"1435-1443"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Retina-Like Visual Image Reconstruction via Spiking Neural Model\",\"authors\":\"Lin Zhu, Siwei Dong, Jianing Li, Tiejun Huang, Yonghong Tian\",\"doi\":\"10.1109/cvpr42600.2020.00151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high-sensitivity vision of primates, including humans, is mediated by a small retinal region called the fovea. As a novel bio-inspired vision sensor, spike camera mimics the fovea to record the nature scenes by continuous-time spikes instead of frame-based manner. However, reconstructing visual images from the spikes remains to be a challenge. In this paper, we design a retina-like visual image reconstruction framework, which is flexible in reconstructing full texture of natural scenes from the totally new spike data. Specifically, the proposed architecture consists of motion local excitation layer, spike refining layer and visual reconstruction layer motivated by bio-realistic leaky integrate and fire (LIF) neurons and synapse connection with spike-timing-dependent plasticity (STDP) rules. This approach may represent a major shift from conventional frame-based vision to the continuous-time retina-like vision, owning to the advantages of high temporal resolution and low power consumption. To test the performance, a spike dataset is constructed which is recorded by the spike camera. The experimental results show that the proposed approach is extremely effective in reconstructing the visual image in both normal and high speed scenes, while achieving high dynamic range and high image quality.\",\"PeriodicalId\":6715,\"journal\":{\"name\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"14 1\",\"pages\":\"1435-1443\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvpr42600.2020.00151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

包括人类在内的灵长类动物的高灵敏度视觉是由一个叫做中央凹的小视网膜区域调节的。刺突相机是一种新型的仿生视觉传感器,它以连续时间的刺突代替基于帧的方式来模拟中央凹来记录自然场景。然而,从尖刺中重建视觉图像仍然是一个挑战。本文设计了一种类似视网膜的视觉图像重建框架,该框架可以灵活地从全新的峰值数据中重建自然场景的全纹理。具体而言,该结构由运动局部激励层、脉冲精炼层和视觉重建层组成,这些层由生物逼真的漏积分和火(LIF)神经元驱动,并根据spike- time -dependent plasticity (STDP)规则连接突触。该方法具有高时间分辨率和低功耗的优点,可能代表着从传统的基于框架的视觉到连续时间类视网膜视觉的重大转变。为了测试该算法的性能,构建了一个由spike摄像机记录的spike数据集。实验结果表明,该方法在正常和高速场景下都能非常有效地重建视觉图像,同时实现高动态范围和高图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retina-Like Visual Image Reconstruction via Spiking Neural Model
The high-sensitivity vision of primates, including humans, is mediated by a small retinal region called the fovea. As a novel bio-inspired vision sensor, spike camera mimics the fovea to record the nature scenes by continuous-time spikes instead of frame-based manner. However, reconstructing visual images from the spikes remains to be a challenge. In this paper, we design a retina-like visual image reconstruction framework, which is flexible in reconstructing full texture of natural scenes from the totally new spike data. Specifically, the proposed architecture consists of motion local excitation layer, spike refining layer and visual reconstruction layer motivated by bio-realistic leaky integrate and fire (LIF) neurons and synapse connection with spike-timing-dependent plasticity (STDP) rules. This approach may represent a major shift from conventional frame-based vision to the continuous-time retina-like vision, owning to the advantages of high temporal resolution and low power consumption. To test the performance, a spike dataset is constructed which is recorded by the spike camera. The experimental results show that the proposed approach is extremely effective in reconstructing the visual image in both normal and high speed scenes, while achieving high dynamic range and high image quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery 3D Part Guided Image Editing for Fine-Grained Object Understanding SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation Approximating shapes in images with low-complexity polygons PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1