M. Kļaviņš, L. Klavins, O. Stabnikova, V. Stabnikov, A. Marynin, L. Ansone-Bērtiņa, Marcis Mezulis, Ashok Vaseashta
{"title":"基于水环境组成的微塑料与药物相互作用","authors":"M. Kļaviņš, L. Klavins, O. Stabnikova, V. Stabnikov, A. Marynin, L. Ansone-Bērtiņa, Marcis Mezulis, Ashok Vaseashta","doi":"10.3390/microplastics1030037","DOIUrl":null,"url":null,"abstract":"A large amount of the globally produced plastics are not treated and are eventually released into landfills or natural environments, including surface waters. The plastics that enter the aquatic environment are very often microplastics, which are produced in households by the slow degradation or abrasion of plastic products, or as whole plastic products, which eventually degrade (abrasion, photodegradation). Together with microplastics, other pollutants such as pharmaceuticals of various kinds enter surface waters—both of these counterparts can interact with each other as well as with organic and inorganic molecules available in the natural environment. The aim of this study was to identify the interaction of microplastics with pharmaceuticals, especially under conditions that are common in inland waters as well as the seas and oceans that the rivers feed their water into. It was found that salinity has a great impact on the sorption capacity of microplastics and pharmaceuticals. The sorption of naturally occurring humic substances (humic and fulvic acids) can greatly increase when the microplastic–pharmaceutical complex is formed; however, the priority of the interaction happens with pharmaceuticals and humic substances. Such complexes can influence the organisms that feed on small organic-matter particles, as they can be mistaken for food and thus be transferred throughout the food chain.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Interaction between Microplastics and Pharmaceuticals Depending on the Composition of Aquatic Environment\",\"authors\":\"M. Kļaviņš, L. Klavins, O. Stabnikova, V. Stabnikov, A. Marynin, L. Ansone-Bērtiņa, Marcis Mezulis, Ashok Vaseashta\",\"doi\":\"10.3390/microplastics1030037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large amount of the globally produced plastics are not treated and are eventually released into landfills or natural environments, including surface waters. The plastics that enter the aquatic environment are very often microplastics, which are produced in households by the slow degradation or abrasion of plastic products, or as whole plastic products, which eventually degrade (abrasion, photodegradation). Together with microplastics, other pollutants such as pharmaceuticals of various kinds enter surface waters—both of these counterparts can interact with each other as well as with organic and inorganic molecules available in the natural environment. The aim of this study was to identify the interaction of microplastics with pharmaceuticals, especially under conditions that are common in inland waters as well as the seas and oceans that the rivers feed their water into. It was found that salinity has a great impact on the sorption capacity of microplastics and pharmaceuticals. The sorption of naturally occurring humic substances (humic and fulvic acids) can greatly increase when the microplastic–pharmaceutical complex is formed; however, the priority of the interaction happens with pharmaceuticals and humic substances. Such complexes can influence the organisms that feed on small organic-matter particles, as they can be mistaken for food and thus be transferred throughout the food chain.\",\"PeriodicalId\":74190,\"journal\":{\"name\":\"Microplastics and nanoplastics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microplastics and nanoplastics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microplastics1030037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microplastics and nanoplastics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microplastics1030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interaction between Microplastics and Pharmaceuticals Depending on the Composition of Aquatic Environment
A large amount of the globally produced plastics are not treated and are eventually released into landfills or natural environments, including surface waters. The plastics that enter the aquatic environment are very often microplastics, which are produced in households by the slow degradation or abrasion of plastic products, or as whole plastic products, which eventually degrade (abrasion, photodegradation). Together with microplastics, other pollutants such as pharmaceuticals of various kinds enter surface waters—both of these counterparts can interact with each other as well as with organic and inorganic molecules available in the natural environment. The aim of this study was to identify the interaction of microplastics with pharmaceuticals, especially under conditions that are common in inland waters as well as the seas and oceans that the rivers feed their water into. It was found that salinity has a great impact on the sorption capacity of microplastics and pharmaceuticals. The sorption of naturally occurring humic substances (humic and fulvic acids) can greatly increase when the microplastic–pharmaceutical complex is formed; however, the priority of the interaction happens with pharmaceuticals and humic substances. Such complexes can influence the organisms that feed on small organic-matter particles, as they can be mistaken for food and thus be transferred throughout the food chain.