旋转不变性人脸识别的光学神经网络

K. Parimala Geetha, S. Sundaravadivelu, N. Singh
{"title":"旋转不变性人脸识别的光学神经网络","authors":"K. Parimala Geetha, S. Sundaravadivelu, N. Singh","doi":"10.1109/TENCON.2008.4766806","DOIUrl":null,"url":null,"abstract":"In this paper, we present an optical neural network based face detection system. Unlike similar systems which are limited to detecting upright, frontal faces, this system detects faces at any degree of rotation in the image plane. The system employs multiple networks; the first is an orientation network which processes each input window to determine its orientation and then uses this information to prepare the window for identifier network. We present the training methods for both types of networks. We also perform analysis on the networks, and present empirical results on a large test set. Finally, we recognize the face using Principal Component Analysis approach.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":"34 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rotation invariant face recognition using optical neural networks\",\"authors\":\"K. Parimala Geetha, S. Sundaravadivelu, N. Singh\",\"doi\":\"10.1109/TENCON.2008.4766806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an optical neural network based face detection system. Unlike similar systems which are limited to detecting upright, frontal faces, this system detects faces at any degree of rotation in the image plane. The system employs multiple networks; the first is an orientation network which processes each input window to determine its orientation and then uses this information to prepare the window for identifier network. We present the training methods for both types of networks. We also perform analysis on the networks, and present empirical results on a large test set. Finally, we recognize the face using Principal Component Analysis approach.\",\"PeriodicalId\":22230,\"journal\":{\"name\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"volume\":\"34 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2008.4766806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于光学神经网络的人脸检测系统。不像类似的系统,仅限于检测直立,正面的脸,该系统检测脸在任何程度的旋转在图像平面上。该系统采用多个网络;首先是方向网络,它处理每个输入窗口以确定其方向,然后使用该信息为标识符网络准备窗口。我们给出了这两种网络的训练方法。我们还对网络进行了分析,并在一个大的测试集上给出了实证结果。最后,利用主成分分析法对人脸进行识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rotation invariant face recognition using optical neural networks
In this paper, we present an optical neural network based face detection system. Unlike similar systems which are limited to detecting upright, frontal faces, this system detects faces at any degree of rotation in the image plane. The system employs multiple networks; the first is an orientation network which processes each input window to determine its orientation and then uses this information to prepare the window for identifier network. We present the training methods for both types of networks. We also perform analysis on the networks, and present empirical results on a large test set. Finally, we recognize the face using Principal Component Analysis approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measured impedance by distance relay for inter phase faults in presence of SSSC on a double circuit transmission line A parallel architecture for successive elimination block matching algorithm An RNS based transform architecture for H.264/AVC Routing protocol enhancement for handling node mobility in wireless sensor networks MPEG-21-based scalable bitstream adaptation using medium grain scalability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1