全球地震能量时间序列预测

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Advances in Data Science and Adaptive Analysis Pub Date : 2017-11-09 DOI:10.1142/S2424922X17500085
S. Raghukanth, B. Kavitha, J. Dhanya
{"title":"全球地震能量时间序列预测","authors":"S. Raghukanth, B. Kavitha, J. Dhanya","doi":"10.1142/S2424922X17500085","DOIUrl":null,"url":null,"abstract":"This paper explores a new method to model and forecast the global earthquake energy release time series. The ISC-GEM catalogue of global events with magnitude Mw ≥ 6.4 is used in this study. The magnitudes of individual events are converted into seismic energy using an empirical relation. The annual earthquake energy time series is constructed by adding the energy releases of all the events in a particular year. Then, the energy time series is decomposed into finite number of intrinsic mode functions (IMFs) using empirical mode decomposition (EMD) technique. The periodicities of these IMF’s and their contribution to the total variance of the data are examined to identify the influence of natural phenomenon on earthquake energy release. The artificial neural network technique (ANN) is further used for modeling the energy-time series. The model is verified with an independent subset of data and validated using statistical parameters. The forecast of the annual earthquake energy release is provided for the y...","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"24 1","pages":"1750008:1-1750008:20"},"PeriodicalIF":0.5000,"publicationDate":"2017-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Forecasting of Global Earthquake Energy Time Series\",\"authors\":\"S. Raghukanth, B. Kavitha, J. Dhanya\",\"doi\":\"10.1142/S2424922X17500085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores a new method to model and forecast the global earthquake energy release time series. The ISC-GEM catalogue of global events with magnitude Mw ≥ 6.4 is used in this study. The magnitudes of individual events are converted into seismic energy using an empirical relation. The annual earthquake energy time series is constructed by adding the energy releases of all the events in a particular year. Then, the energy time series is decomposed into finite number of intrinsic mode functions (IMFs) using empirical mode decomposition (EMD) technique. The periodicities of these IMF’s and their contribution to the total variance of the data are examined to identify the influence of natural phenomenon on earthquake energy release. The artificial neural network technique (ANN) is further used for modeling the energy-time series. The model is verified with an independent subset of data and validated using statistical parameters. The forecast of the annual earthquake energy release is provided for the y...\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"24 1\",\"pages\":\"1750008:1-1750008:20\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2424922X17500085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424922X17500085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

本文探讨了一种模拟和预报全球地震能量释放时间序列的新方法。本研究使用的是ISC-GEM的Mw≥6.4级全球事件目录。利用经验关系将单个事件的震级转换为地震能量。将某一年所有地震事件的能量释放量相加,构造出年地震能量时间序列。然后,利用经验模态分解(EMD)技术将能量时间序列分解为有限个本征模态函数(IMFs)。研究了这些IMF的周期性及其对数据总方差的贡献,以确定自然现象对地震能量释放的影响。进一步利用人工神经网络技术对能量-时间序列进行建模。用独立的数据子集对模型进行了验证,并使用统计参数对模型进行了验证。为该地区提供了年地震能量释放预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting of Global Earthquake Energy Time Series
This paper explores a new method to model and forecast the global earthquake energy release time series. The ISC-GEM catalogue of global events with magnitude Mw ≥ 6.4 is used in this study. The magnitudes of individual events are converted into seismic energy using an empirical relation. The annual earthquake energy time series is constructed by adding the energy releases of all the events in a particular year. Then, the energy time series is decomposed into finite number of intrinsic mode functions (IMFs) using empirical mode decomposition (EMD) technique. The periodicities of these IMF’s and their contribution to the total variance of the data are examined to identify the influence of natural phenomenon on earthquake energy release. The artificial neural network technique (ANN) is further used for modeling the energy-time series. The model is verified with an independent subset of data and validated using statistical parameters. The forecast of the annual earthquake energy release is provided for the y...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
期刊最新文献
Assessment Of Mars Analog Habitation Plans Using Network Analysis Methodologies A Novel Genetic-Inspired Binary Firefly Algorithm for Feature Selection in the Prediction of Cervical Cancer Big Data Analytics for Predictive System Maintenance Using Machine Learning Models Data Mining for Estimating the Impact of Physical Activity Levels on the Health-Related Well-Being A Novel Autoencoder Deep Architecture for Detecting the Outlier in Heterogeneous Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1