加速蛋白质结构比较工具的框架

Ahmad Salah, Kenli Li, Tarek F. Gharib
{"title":"加速蛋白质结构比较工具的框架","authors":"Ahmad Salah, Kenli Li, Tarek F. Gharib","doi":"10.1109/CCGrid.2015.136","DOIUrl":null,"url":null,"abstract":"At the center of computational structural biology, protein structure comparison is a key problem. The steady increase in the number of protein structures encourages the development of massively parallel tools. While the focus of research is to propose data-analytical methods to tackle this problem, there are limited research proposing generic tools to run these methods in parallel environments. Herein, we propose a scalable framework to handle this steady increase. The proposed framework runs the sequential tools on parallel environments. It is a GUI-based and requiring no scripting or installation procedures. The framework includes optimally distributing protein structure database over the existing computing resources, tracking the remote processes course of execution, and merging the results to form the final output. The first stage realizes the biological database distribution as an optimization problem in order to maximize the cluster resources utilization and minimize the execution time. The experimental results show linear and nearly optimal speedups with no loss in accuracy. The framework is available at http://biocloud.hnu.edu.cn/ppsc/.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"8 1","pages":"705-708"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework to Accelerate Protein Structure Comparison Tools\",\"authors\":\"Ahmad Salah, Kenli Li, Tarek F. Gharib\",\"doi\":\"10.1109/CCGrid.2015.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the center of computational structural biology, protein structure comparison is a key problem. The steady increase in the number of protein structures encourages the development of massively parallel tools. While the focus of research is to propose data-analytical methods to tackle this problem, there are limited research proposing generic tools to run these methods in parallel environments. Herein, we propose a scalable framework to handle this steady increase. The proposed framework runs the sequential tools on parallel environments. It is a GUI-based and requiring no scripting or installation procedures. The framework includes optimally distributing protein structure database over the existing computing resources, tracking the remote processes course of execution, and merging the results to form the final output. The first stage realizes the biological database distribution as an optimization problem in order to maximize the cluster resources utilization and minimize the execution time. The experimental results show linear and nearly optimal speedups with no loss in accuracy. The framework is available at http://biocloud.hnu.edu.cn/ppsc/.\",\"PeriodicalId\":6664,\"journal\":{\"name\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"volume\":\"8 1\",\"pages\":\"705-708\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2015.136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算结构生物学的中心,蛋白质结构比较是一个关键问题。蛋白质结构数量的稳定增长鼓励了大规模并行工具的发展。虽然研究的重点是提出数据分析方法来解决这个问题,但提出在并行环境中运行这些方法的通用工具的研究有限。在这里,我们提出了一个可扩展的框架来处理这种稳定的增长。提出的框架在并行环境中运行顺序工具。它是基于gui的,不需要脚本或安装过程。该框架包括在现有计算资源上优化分布蛋白质结构数据库,跟踪远程进程的执行过程,并合并结果形成最终输出。第一阶段将生物数据库的分布作为一个优化问题来实现,以最大化集群资源利用率和最小化执行时间。实验结果表明,在精度没有损失的情况下,加速是线性的,几乎是最优的。该框架可从http://biocloud.hnu.edu.cn/ppsc/获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework to Accelerate Protein Structure Comparison Tools
At the center of computational structural biology, protein structure comparison is a key problem. The steady increase in the number of protein structures encourages the development of massively parallel tools. While the focus of research is to propose data-analytical methods to tackle this problem, there are limited research proposing generic tools to run these methods in parallel environments. Herein, we propose a scalable framework to handle this steady increase. The proposed framework runs the sequential tools on parallel environments. It is a GUI-based and requiring no scripting or installation procedures. The framework includes optimally distributing protein structure database over the existing computing resources, tracking the remote processes course of execution, and merging the results to form the final output. The first stage realizes the biological database distribution as an optimization problem in order to maximize the cluster resources utilization and minimize the execution time. The experimental results show linear and nearly optimal speedups with no loss in accuracy. The framework is available at http://biocloud.hnu.edu.cn/ppsc/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self Protecting Data Sharing Using Generic Policies Partition-Aware Routing to Improve Network Isolation in Infiniband Based Multi-tenant Clusters MIC-Tandem: Parallel X!Tandem Using MIC on Tandem Mass Spectrometry Based Proteomics Data Study of the KVM CPU Performance of Open-Source Cloud Management Platforms Visualizing City Events on Search Engine: Tword the Search Infrustration for Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1