基于相关性感知在线挖掘的学习视频检索模型

Alex Falcon, G. Serra, O. Lanz
{"title":"基于相关性感知在线挖掘的学习视频检索模型","authors":"Alex Falcon, G. Serra, O. Lanz","doi":"10.48550/arXiv.2203.08688","DOIUrl":null,"url":null,"abstract":"Due to the amount of videos and related captions uploaded every hour, deep learning-based solutions for cross-modal video retrieval are attracting more and more attention. A typical approach consists in learning a joint text-video embedding space, where the similarity of a video and its associated caption is maximized, whereas a lower similarity is enforced with all the other captions, called negatives. This approach assumes that only the video and caption pairs in the dataset are valid, but different captions positives may also describe its visual contents, hence some of them may be wrongly penalized. To address this shortcoming, we propose the Relevance-Aware Negatives and Positives mining (RANP) which, based on the semantics of the negatives, improves their selection while also increasing the similarity of other valid positives. We explore the influence of these techniques on two videotext datasets: EPIC-Kitchens-100 and MSR-VTT. By using the proposed techniques, we achieve considerable improvements in terms of nDCG and mAP, leading to state-of-the-art results, e.g. +5.3% nDCG and +3.0% mAP on EPIC-Kitchens-100. We share code and pretrained models at https://github.com/aranciokov/ranp.","PeriodicalId":74527,"journal":{"name":"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing","volume":"26 1","pages":"182-194"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning video retrieval models with relevance-aware online mining\",\"authors\":\"Alex Falcon, G. Serra, O. Lanz\",\"doi\":\"10.48550/arXiv.2203.08688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the amount of videos and related captions uploaded every hour, deep learning-based solutions for cross-modal video retrieval are attracting more and more attention. A typical approach consists in learning a joint text-video embedding space, where the similarity of a video and its associated caption is maximized, whereas a lower similarity is enforced with all the other captions, called negatives. This approach assumes that only the video and caption pairs in the dataset are valid, but different captions positives may also describe its visual contents, hence some of them may be wrongly penalized. To address this shortcoming, we propose the Relevance-Aware Negatives and Positives mining (RANP) which, based on the semantics of the negatives, improves their selection while also increasing the similarity of other valid positives. We explore the influence of these techniques on two videotext datasets: EPIC-Kitchens-100 and MSR-VTT. By using the proposed techniques, we achieve considerable improvements in terms of nDCG and mAP, leading to state-of-the-art results, e.g. +5.3% nDCG and +3.0% mAP on EPIC-Kitchens-100. We share code and pretrained models at https://github.com/aranciokov/ranp.\",\"PeriodicalId\":74527,\"journal\":{\"name\":\"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing\",\"volume\":\"26 1\",\"pages\":\"182-194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.08688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.08688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于每小时上传的视频和相关字幕数量庞大,基于深度学习的跨模式视频检索解决方案越来越受到关注。一个典型的方法是学习一个联合文本-视频嵌入空间,其中视频及其相关标题的相似性被最大化,而所有其他标题的相似性被强制降低,称为阴性。这种方法假设数据集中只有视频和字幕对是有效的,但是不同的字幕阳性也可能描述了它的视觉内容,因此其中一些可能会被错误地惩罚。为了解决这一缺点,我们提出了基于否定语义的关联感知否定和肯定挖掘(RANP),该方法改进了否定的选择,同时也增加了其他有效肯定的相似性。我们探讨了这些技术对两个视频文本数据集的影响:EPIC-Kitchens-100和MSR-VTT。通过使用所提出的技术,我们在nDCG和mAP方面取得了相当大的改进,导致了最先进的结果,例如EPIC-Kitchens-100上+5.3%的nDCG和+3.0%的mAP。我们在https://github.com/aranciokov/ranp上共享代码和预训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning video retrieval models with relevance-aware online mining
Due to the amount of videos and related captions uploaded every hour, deep learning-based solutions for cross-modal video retrieval are attracting more and more attention. A typical approach consists in learning a joint text-video embedding space, where the similarity of a video and its associated caption is maximized, whereas a lower similarity is enforced with all the other captions, called negatives. This approach assumes that only the video and caption pairs in the dataset are valid, but different captions positives may also describe its visual contents, hence some of them may be wrongly penalized. To address this shortcoming, we propose the Relevance-Aware Negatives and Positives mining (RANP) which, based on the semantics of the negatives, improves their selection while also increasing the similarity of other valid positives. We explore the influence of these techniques on two videotext datasets: EPIC-Kitchens-100 and MSR-VTT. By using the proposed techniques, we achieve considerable improvements in terms of nDCG and mAP, leading to state-of-the-art results, e.g. +5.3% nDCG and +3.0% mAP on EPIC-Kitchens-100. We share code and pretrained models at https://github.com/aranciokov/ranp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Logic Visual Network (FLVN): A neuro-symbolic approach for visual features matching Sparse Double Descent in Vision Transformers: real or phantom threat? Not with my name! Inferring artists' names of input strings employed by Diffusion Models CarPatch: A Synthetic Benchmark for Radiance Field Evaluation on Vehicle Components Unsupervised Video Anomaly Detection with Diffusion Models Conditioned on Compact Motion Representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1