在微体系结构和系统级别处理过程变化

S. Garg, Diana Marculescu
{"title":"在微体系结构和系统级别处理过程变化","authors":"S. Garg, Diana Marculescu","doi":"10.1561/1000000031","DOIUrl":null,"url":null,"abstract":"Technology scaling has resulted in an increasing magnitude of and sensitivity to manufacturing process variations. This has led to the adoption of statistical design methodologies as opposed to conventional static design techniques. At the same time, increasing design complexity has motivated a shift toward higher levels of design abstraction, i.e., micro-architecture and system level design. In this survey, we highlight emerging statistical design techniques targeted toward the analysis and mitigation of process variation at the system level design abstraction, for both conventional planar and emerging 3D integrated circuits. The topics covered include variability macro-modeling for logic modules, system level variability analysis for multi-core systems, and system level variability mitigation techniques. We conclude with some pointers toward future research directions.","PeriodicalId":42137,"journal":{"name":"Foundations and Trends in Electronic Design Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Addressing Process Variations at the Microarchitecture and System Level\",\"authors\":\"S. Garg, Diana Marculescu\",\"doi\":\"10.1561/1000000031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology scaling has resulted in an increasing magnitude of and sensitivity to manufacturing process variations. This has led to the adoption of statistical design methodologies as opposed to conventional static design techniques. At the same time, increasing design complexity has motivated a shift toward higher levels of design abstraction, i.e., micro-architecture and system level design. In this survey, we highlight emerging statistical design techniques targeted toward the analysis and mitigation of process variation at the system level design abstraction, for both conventional planar and emerging 3D integrated circuits. The topics covered include variability macro-modeling for logic modules, system level variability analysis for multi-core systems, and system level variability mitigation techniques. We conclude with some pointers toward future research directions.\",\"PeriodicalId\":42137,\"journal\":{\"name\":\"Foundations and Trends in Electronic Design Automation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Electronic Design Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/1000000031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Electronic Design Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1000000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

技术规模化导致制造工艺变化的幅度和敏感性不断增加。这导致采用统计设计方法,而不是传统的静态设计技术。同时,不断增加的设计复杂性促使人们转向更高层次的设计抽象,即微架构和系统级设计。在本调查中,我们重点介绍了针对传统平面和新兴3D集成电路的系统级设计抽象分析和缓解过程变化的新兴统计设计技术。涵盖的主题包括逻辑模块的可变性宏观建模,多核系统的系统级可变性分析,以及系统级可变性缓解技术。最后,对今后的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addressing Process Variations at the Microarchitecture and System Level
Technology scaling has resulted in an increasing magnitude of and sensitivity to manufacturing process variations. This has led to the adoption of statistical design methodologies as opposed to conventional static design techniques. At the same time, increasing design complexity has motivated a shift toward higher levels of design abstraction, i.e., micro-architecture and system level design. In this survey, we highlight emerging statistical design techniques targeted toward the analysis and mitigation of process variation at the system level design abstraction, for both conventional planar and emerging 3D integrated circuits. The topics covered include variability macro-modeling for logic modules, system level variability analysis for multi-core systems, and system level variability mitigation techniques. We conclude with some pointers toward future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations and Trends in Electronic Design Automation
Foundations and Trends in Electronic Design Automation ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
0
期刊介绍: Foundations and Trends® in Electronic Design Automation publishes survey and tutorial articles in the following topics: - System Level Design - Behavioral Synthesis - Logic Design - Verification - Test - Physical Design - Circuit Level Design - Reconfigurable Systems - Analog Design Each issue of Foundations and Trends® in Electronic Design Automation comprises a 50-100 page monograph written by research leaders in the field.
期刊最新文献
From CNN to DNN Hardware Accelerators: A Survey on Design, Exploration, Simulation, and Frameworks Self-Powered Wearable IoT Devices for Health and Activity Monitoring On-Chip Dynamic Resource Management Contracts for System Design Non-Boolean Computing with Spintronic Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1