{"title":"利用圆二色性检测手性对和拓扑超流动性","authors":"J. M. Midtgaard, Zhigang Wu, N. Goldman, G. Bruun","doi":"10.1103/PHYSREVRESEARCH.2.033385","DOIUrl":null,"url":null,"abstract":"Realising and probing topological superfluids is a key goal for fundamental science, with exciting technological promises. Here, we show that chiral $p_x+ip_y$ pairing in a two-dimensional topological superfluid can be detected through circular dichroism, namely, as a difference in the excitation rates induced by a clockwise and counter-clockwise circular drive. For weak pairing, this difference is to a very good approximation determined by the Chern number of the superfluid, whereas there is a non-topological contribution scaling as the superfluid gap squared that becomes signifiant for stronger pairing. This gives rise to a competition between the experimentally driven goal to maximise the critical temperature of the superfluid, and observing a signal given by the underlying topology. Using a combination of strong coupling Eliashberg and Berezinskii-Kosterlitz-Thouless theory, we analyse this tension for an atomic Bose-Fermi gas, which represents a promising platform for realising a chiral superfluid. We identify a wide range of system parameters where both the critical temperature is high and the topological contribution to the dichroic signal is dominant.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detecting chiral pairing and topological superfluidity using circular dichroism\",\"authors\":\"J. M. Midtgaard, Zhigang Wu, N. Goldman, G. Bruun\",\"doi\":\"10.1103/PHYSREVRESEARCH.2.033385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Realising and probing topological superfluids is a key goal for fundamental science, with exciting technological promises. Here, we show that chiral $p_x+ip_y$ pairing in a two-dimensional topological superfluid can be detected through circular dichroism, namely, as a difference in the excitation rates induced by a clockwise and counter-clockwise circular drive. For weak pairing, this difference is to a very good approximation determined by the Chern number of the superfluid, whereas there is a non-topological contribution scaling as the superfluid gap squared that becomes signifiant for stronger pairing. This gives rise to a competition between the experimentally driven goal to maximise the critical temperature of the superfluid, and observing a signal given by the underlying topology. Using a combination of strong coupling Eliashberg and Berezinskii-Kosterlitz-Thouless theory, we analyse this tension for an atomic Bose-Fermi gas, which represents a promising platform for realising a chiral superfluid. We identify a wide range of system parameters where both the critical temperature is high and the topological contribution to the dichroic signal is dominant.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.2.033385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.2.033385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting chiral pairing and topological superfluidity using circular dichroism
Realising and probing topological superfluids is a key goal for fundamental science, with exciting technological promises. Here, we show that chiral $p_x+ip_y$ pairing in a two-dimensional topological superfluid can be detected through circular dichroism, namely, as a difference in the excitation rates induced by a clockwise and counter-clockwise circular drive. For weak pairing, this difference is to a very good approximation determined by the Chern number of the superfluid, whereas there is a non-topological contribution scaling as the superfluid gap squared that becomes signifiant for stronger pairing. This gives rise to a competition between the experimentally driven goal to maximise the critical temperature of the superfluid, and observing a signal given by the underlying topology. Using a combination of strong coupling Eliashberg and Berezinskii-Kosterlitz-Thouless theory, we analyse this tension for an atomic Bose-Fermi gas, which represents a promising platform for realising a chiral superfluid. We identify a wide range of system parameters where both the critical temperature is high and the topological contribution to the dichroic signal is dominant.