Matthew Bernhard, Allison McDonald, Henry Meng, Jensen Hwa, Nakul Bajaj, Kevin Chang, J. A. Halderman
{"title":"选民能发现恶意操纵选票标记装置吗?","authors":"Matthew Bernhard, Allison McDonald, Henry Meng, Jensen Hwa, Nakul Bajaj, Kevin Chang, J. A. Halderman","doi":"10.1109/SP40000.2020.00118","DOIUrl":null,"url":null,"abstract":"Ballot marking devices (BMDs) allow voters to select candidates on a computer kiosk, which prints a paper ballot that the voter can review before inserting it into a scanner to be tabulated. Unlike paperless voting machines, BMDs provide voters an opportunity to verify an auditable physical record of their choices, and a growing number of U.S. jurisdictions are adopting them for all voters. However, the security of BMDs depends on how reliably voters notice and correct any adversarially induced errors on their printed ballots. In order to measure voters’ error detection abilities, we conducted a large study (N = 241) in a realistic polling place setting using real voting machines that we modified to introduce an error into each printout. Without intervention, only 40% of participants reviewed their printed ballots at all, and only 6.6% told a poll worker something was wrong. We also find that carefully designed interventions can improve verification performance. Verbally instructing voters to review the printouts and providing a written slate of candidates for whom to vote both significantly increased review and reporting rates—although the improvements may not be large enough to provide strong security in close elections, especially when BMDs are used by all voters. Based on these findings, we make several evidence-based recommendations to help better defend BMD-based elections.","PeriodicalId":6849,"journal":{"name":"2020 IEEE Symposium on Security and Privacy (SP)","volume":"16 1","pages":"679-694"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Can Voters Detect Malicious Manipulation of Ballot Marking Devices?\",\"authors\":\"Matthew Bernhard, Allison McDonald, Henry Meng, Jensen Hwa, Nakul Bajaj, Kevin Chang, J. A. Halderman\",\"doi\":\"10.1109/SP40000.2020.00118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ballot marking devices (BMDs) allow voters to select candidates on a computer kiosk, which prints a paper ballot that the voter can review before inserting it into a scanner to be tabulated. Unlike paperless voting machines, BMDs provide voters an opportunity to verify an auditable physical record of their choices, and a growing number of U.S. jurisdictions are adopting them for all voters. However, the security of BMDs depends on how reliably voters notice and correct any adversarially induced errors on their printed ballots. In order to measure voters’ error detection abilities, we conducted a large study (N = 241) in a realistic polling place setting using real voting machines that we modified to introduce an error into each printout. Without intervention, only 40% of participants reviewed their printed ballots at all, and only 6.6% told a poll worker something was wrong. We also find that carefully designed interventions can improve verification performance. Verbally instructing voters to review the printouts and providing a written slate of candidates for whom to vote both significantly increased review and reporting rates—although the improvements may not be large enough to provide strong security in close elections, especially when BMDs are used by all voters. Based on these findings, we make several evidence-based recommendations to help better defend BMD-based elections.\",\"PeriodicalId\":6849,\"journal\":{\"name\":\"2020 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"16 1\",\"pages\":\"679-694\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP40000.2020.00118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40000.2020.00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Can Voters Detect Malicious Manipulation of Ballot Marking Devices?
Ballot marking devices (BMDs) allow voters to select candidates on a computer kiosk, which prints a paper ballot that the voter can review before inserting it into a scanner to be tabulated. Unlike paperless voting machines, BMDs provide voters an opportunity to verify an auditable physical record of their choices, and a growing number of U.S. jurisdictions are adopting them for all voters. However, the security of BMDs depends on how reliably voters notice and correct any adversarially induced errors on their printed ballots. In order to measure voters’ error detection abilities, we conducted a large study (N = 241) in a realistic polling place setting using real voting machines that we modified to introduce an error into each printout. Without intervention, only 40% of participants reviewed their printed ballots at all, and only 6.6% told a poll worker something was wrong. We also find that carefully designed interventions can improve verification performance. Verbally instructing voters to review the printouts and providing a written slate of candidates for whom to vote both significantly increased review and reporting rates—although the improvements may not be large enough to provide strong security in close elections, especially when BMDs are used by all voters. Based on these findings, we make several evidence-based recommendations to help better defend BMD-based elections.