寻找属性图的多维约束可达路径

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-08-22 DOI:10.4108/eetsis.v9i4.2581
Bhargavi B., K. Rani, Arunjyoti Neog
{"title":"寻找属性图的多维约束可达路径","authors":"Bhargavi B., K. Rani, Arunjyoti Neog","doi":"10.4108/eetsis.v9i4.2581","DOIUrl":null,"url":null,"abstract":"A graph acts as a powerful modelling tool to represent complex relationships between objects in the big data era. Given two vertices, vertex and edge constraints, the multidimensional constraint reachable ( MCR) paths problem finds the path between the given vertices that match the user-specified constraints. A significant challenge is to store the graph topology and attribute information while constructing a reachability index. We propose an optimized hashing-based heuristic search technique to address this challenge while solving the multidimensional constraint reachability queries. In the proposed technique, we optimize hashing and recommend an efficient clustering technique based on matrix factorization. We further extend the heuristic search technique to improve the accuracy. We experimentally prove that our proposed techniques are scalable and accurate on real and synthetic datasets. Our proposed extended heuristic search technique is able to achieve an average execution time of 0.17 seconds and 2.55 seconds on MCR true queries with vertex and edge constraints for Robots and Twitter datasets respectively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding Multidimensional Constraint Reachable Paths for Attributed Graphs\",\"authors\":\"Bhargavi B., K. Rani, Arunjyoti Neog\",\"doi\":\"10.4108/eetsis.v9i4.2581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graph acts as a powerful modelling tool to represent complex relationships between objects in the big data era. Given two vertices, vertex and edge constraints, the multidimensional constraint reachable ( MCR) paths problem finds the path between the given vertices that match the user-specified constraints. A significant challenge is to store the graph topology and attribute information while constructing a reachability index. We propose an optimized hashing-based heuristic search technique to address this challenge while solving the multidimensional constraint reachability queries. In the proposed technique, we optimize hashing and recommend an efficient clustering technique based on matrix factorization. We further extend the heuristic search technique to improve the accuracy. We experimentally prove that our proposed techniques are scalable and accurate on real and synthetic datasets. Our proposed extended heuristic search technique is able to achieve an average execution time of 0.17 seconds and 2.55 seconds on MCR true queries with vertex and edge constraints for Robots and Twitter datasets respectively.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetsis.v9i4.2581\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.v9i4.2581","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在大数据时代,图形作为一种强大的建模工具来表示对象之间的复杂关系。给定两个顶点,顶点约束和边约束,多维约束可达路径问题找到与用户指定约束匹配的给定顶点之间的路径。在构建可达性索引时存储图拓扑和属性信息是一个重大挑战。我们提出了一种优化的基于哈希的启发式搜索技术来解决这一挑战,同时解决多维约束可达性查询。在提出的技术中,我们优化了哈希,并推荐了一种基于矩阵分解的高效聚类技术。我们进一步扩展了启发式搜索技术以提高准确率。我们通过实验证明了我们提出的技术在真实和合成数据集上具有可扩展性和准确性。我们提出的扩展启发式搜索技术能够在具有顶点约束和边缘约束的MCR真实查询上分别实现0.17秒和2.55秒的平均执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding Multidimensional Constraint Reachable Paths for Attributed Graphs
A graph acts as a powerful modelling tool to represent complex relationships between objects in the big data era. Given two vertices, vertex and edge constraints, the multidimensional constraint reachable ( MCR) paths problem finds the path between the given vertices that match the user-specified constraints. A significant challenge is to store the graph topology and attribute information while constructing a reachability index. We propose an optimized hashing-based heuristic search technique to address this challenge while solving the multidimensional constraint reachability queries. In the proposed technique, we optimize hashing and recommend an efficient clustering technique based on matrix factorization. We further extend the heuristic search technique to improve the accuracy. We experimentally prove that our proposed techniques are scalable and accurate on real and synthetic datasets. Our proposed extended heuristic search technique is able to achieve an average execution time of 0.17 seconds and 2.55 seconds on MCR true queries with vertex and edge constraints for Robots and Twitter datasets respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1