一种众包Top-k计算的分级排序方法

Kaiyu Li, Xiaohang Zhang, Guoliang Li
{"title":"一种众包Top-k计算的分级排序方法","authors":"Kaiyu Li, Xiaohang Zhang, Guoliang Li","doi":"10.1145/3183713.3183762","DOIUrl":null,"url":null,"abstract":"Crowdsourced top- k computation aims to utilize the human ability to identify Top- k objects from a given set of objects. Most of existing studies employ a pairwise comparison based method, which first asks workers to compare each pair of objects and then infers the Top- k results based on the pairwise comparison results. Obviously, it is quadratic to compare every object pair and these methods involve huge monetary cost, especially for large datasets. To address this problem, we propose a rating-ranking-based approach, which contains two types of questions to ask the crowd. The first is a rating question, which asks the crowd to give a score for an object. The second is a ranking question, which asks the crowd to rank several (e.g., 3) objects. Rating questions are coarse grained and can roughly get a score for each object, which can be used to prune the objects whose scores are much smaller than those of the Top- k objects. Ranking questions are fine grained and can be used to refine the scores. We propose a unified model to model the rating and ranking questions, and seamlessly combine them together to compute the Top- k results. We also study how to judiciously select appropriate rating or ranking questions and assign them to a coming worker. Experimental results on real datasets show that our method significantly outperforms existing approaches.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Rating-Ranking Method for Crowdsourced Top-k Computation\",\"authors\":\"Kaiyu Li, Xiaohang Zhang, Guoliang Li\",\"doi\":\"10.1145/3183713.3183762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowdsourced top- k computation aims to utilize the human ability to identify Top- k objects from a given set of objects. Most of existing studies employ a pairwise comparison based method, which first asks workers to compare each pair of objects and then infers the Top- k results based on the pairwise comparison results. Obviously, it is quadratic to compare every object pair and these methods involve huge monetary cost, especially for large datasets. To address this problem, we propose a rating-ranking-based approach, which contains two types of questions to ask the crowd. The first is a rating question, which asks the crowd to give a score for an object. The second is a ranking question, which asks the crowd to rank several (e.g., 3) objects. Rating questions are coarse grained and can roughly get a score for each object, which can be used to prune the objects whose scores are much smaller than those of the Top- k objects. Ranking questions are fine grained and can be used to refine the scores. We propose a unified model to model the rating and ranking questions, and seamlessly combine them together to compute the Top- k results. We also study how to judiciously select appropriate rating or ranking questions and assign them to a coming worker. Experimental results on real datasets show that our method significantly outperforms existing approaches.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3183762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3183762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

众包top- k计算旨在利用人类的能力从给定的一组对象中识别top- k对象。现有的研究大多采用基于成对比较的方法,首先要求工作人员对每对对象进行比较,然后根据成对比较的结果推断Top- k的结果。显然,每个对象对的比较是二次的,这些方法涉及巨大的货币成本,特别是对于大型数据集。为了解决这个问题,我们提出了一种基于评级-排名的方法,该方法包含两种类型的问题。第一个是评分问题,要求人们给一个物体打分。第二个是排序问题,它要求人群对几个(例如,3个)物体进行排序。评分问题是粗粒度的,可以粗略地得到每个对象的分数,可以用来修剪分数比Top- k对象小得多的对象。排名问题是细粒度的,可用于细化分数。我们提出了一个统一的模型来对评级和排名问题进行建模,并将它们无缝地结合在一起计算Top- k结果。我们还研究如何明智地选择适当的评级或排名问题,并将其分配给新员工。在实际数据集上的实验结果表明,我们的方法明显优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Rating-Ranking Method for Crowdsourced Top-k Computation
Crowdsourced top- k computation aims to utilize the human ability to identify Top- k objects from a given set of objects. Most of existing studies employ a pairwise comparison based method, which first asks workers to compare each pair of objects and then infers the Top- k results based on the pairwise comparison results. Obviously, it is quadratic to compare every object pair and these methods involve huge monetary cost, especially for large datasets. To address this problem, we propose a rating-ranking-based approach, which contains two types of questions to ask the crowd. The first is a rating question, which asks the crowd to give a score for an object. The second is a ranking question, which asks the crowd to rank several (e.g., 3) objects. Rating questions are coarse grained and can roughly get a score for each object, which can be used to prune the objects whose scores are much smaller than those of the Top- k objects. Ranking questions are fine grained and can be used to refine the scores. We propose a unified model to model the rating and ranking questions, and seamlessly combine them together to compute the Top- k results. We also study how to judiciously select appropriate rating or ranking questions and assign them to a coming worker. Experimental results on real datasets show that our method significantly outperforms existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1