图像中属性检测的变长序列模型

Xin Li, Jia-Min Gu, Xiaoyuan Lu, Yan Ning, L. Zhang, Peiyi Shen, Chaochen Gu
{"title":"图像中属性检测的变长序列模型","authors":"Xin Li, Jia-Min Gu, Xiaoyuan Lu, Yan Ning, L. Zhang, Peiyi Shen, Chaochen Gu","doi":"10.3233/jcm-226762","DOIUrl":null,"url":null,"abstract":"Holistic scene understanding is a challenging problem in computer vision. Most recent researches in this field were focusing on the object detection, the semantic segmentation and the relationship detection tasks. The attribute can provide meaningful information for the object instance, thus the object instance can be expressed more detail in the scene understanding. However, most researches in this field have been limited to several special conditions. Such as, several researches were just focusing on the attribute of special object class, because their solutions were aimed at a limited-scenarios, their methods are hardly to generalize in other scenarios. We also find that most of the research for multi-attribute detection task were only regarding each attribute as binary class and simply use the multi-binary-classifier method for the attribute detection. But these strategies above not consider the relation between each pair of the attributes, they will fall into trouble in the “imperfect” attribute dataset (which is labeled with the missing and incomplete annotations), and they will have low performance in the long-tail attribute class (which has lower rank of annotation and more missing labels). In this paper, we focus on the multi-attribute detection for a variant of object classes and take the relation between attributes into consideration. We propose a GRU-based model to detect a variable-length attribute sequence with a customized loss compute method to solve the “imperfect” attribute dataset problem. Furthermore, we perform ablative studies to prove the effectiveness of each part of our method. Finally, we compare our model with several existed multi-attribute detection methods on VG (Visual Genome) and CUB200 bird datasets to prove the superior performance of the proposed model.","PeriodicalId":14668,"journal":{"name":"J. Comput. Methods Sci. Eng.","volume":"16 1","pages":"1913-1927"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable-length sequence model for attribute detection in the image\",\"authors\":\"Xin Li, Jia-Min Gu, Xiaoyuan Lu, Yan Ning, L. Zhang, Peiyi Shen, Chaochen Gu\",\"doi\":\"10.3233/jcm-226762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Holistic scene understanding is a challenging problem in computer vision. Most recent researches in this field were focusing on the object detection, the semantic segmentation and the relationship detection tasks. The attribute can provide meaningful information for the object instance, thus the object instance can be expressed more detail in the scene understanding. However, most researches in this field have been limited to several special conditions. Such as, several researches were just focusing on the attribute of special object class, because their solutions were aimed at a limited-scenarios, their methods are hardly to generalize in other scenarios. We also find that most of the research for multi-attribute detection task were only regarding each attribute as binary class and simply use the multi-binary-classifier method for the attribute detection. But these strategies above not consider the relation between each pair of the attributes, they will fall into trouble in the “imperfect” attribute dataset (which is labeled with the missing and incomplete annotations), and they will have low performance in the long-tail attribute class (which has lower rank of annotation and more missing labels). In this paper, we focus on the multi-attribute detection for a variant of object classes and take the relation between attributes into consideration. We propose a GRU-based model to detect a variable-length attribute sequence with a customized loss compute method to solve the “imperfect” attribute dataset problem. Furthermore, we perform ablative studies to prove the effectiveness of each part of our method. Finally, we compare our model with several existed multi-attribute detection methods on VG (Visual Genome) and CUB200 bird datasets to prove the superior performance of the proposed model.\",\"PeriodicalId\":14668,\"journal\":{\"name\":\"J. Comput. Methods Sci. Eng.\",\"volume\":\"16 1\",\"pages\":\"1913-1927\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Methods Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcm-226762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Methods Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

整体场景理解是计算机视觉中的一个具有挑战性的问题。目前该领域的研究主要集中在目标检测、语义分割和关系检测等方面。属性可以为对象实例提供有意义的信息,从而在场景理解中更详细地表达对象实例。然而,这一领域的大多数研究都局限于几个特殊的条件。例如,一些研究只关注特殊对象类的属性,由于其解决方案针对的场景有限,其方法很难推广到其他场景。我们还发现,对于多属性检测任务的研究大多只是将每个属性作为二值类,简单地使用多二值分类器方法进行属性检测。但以上这些策略没有考虑到每对属性之间的关系,在“不完美”属性数据集(标注了缺失和不完整的注释)中会陷入困境,在长尾属性类(标注等级较低,缺失标签较多)中会表现不佳。本文主要研究对象类的一种变体的多属性检测,并考虑了属性之间的关系。本文提出了一种基于gru的变长属性序列检测模型,并采用自定义损失计算方法来解决属性数据集“不完美”的问题。此外,我们进行烧蚀研究,以证明我们的方法的每个部分的有效性。最后,我们将该模型与现有的几种基于VG (Visual Genome)和CUB200鸟类数据集的多属性检测方法进行了比较,证明了该模型的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variable-length sequence model for attribute detection in the image
Holistic scene understanding is a challenging problem in computer vision. Most recent researches in this field were focusing on the object detection, the semantic segmentation and the relationship detection tasks. The attribute can provide meaningful information for the object instance, thus the object instance can be expressed more detail in the scene understanding. However, most researches in this field have been limited to several special conditions. Such as, several researches were just focusing on the attribute of special object class, because their solutions were aimed at a limited-scenarios, their methods are hardly to generalize in other scenarios. We also find that most of the research for multi-attribute detection task were only regarding each attribute as binary class and simply use the multi-binary-classifier method for the attribute detection. But these strategies above not consider the relation between each pair of the attributes, they will fall into trouble in the “imperfect” attribute dataset (which is labeled with the missing and incomplete annotations), and they will have low performance in the long-tail attribute class (which has lower rank of annotation and more missing labels). In this paper, we focus on the multi-attribute detection for a variant of object classes and take the relation between attributes into consideration. We propose a GRU-based model to detect a variable-length attribute sequence with a customized loss compute method to solve the “imperfect” attribute dataset problem. Furthermore, we perform ablative studies to prove the effectiveness of each part of our method. Finally, we compare our model with several existed multi-attribute detection methods on VG (Visual Genome) and CUB200 bird datasets to prove the superior performance of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retracted to: Design and dynamics simulation of vehicle active occupant restraint protection system Flip-OFDM Optical MIMO Based VLC System Using ML/DL Approach Using the Structure-Behavior Coalescence Method to Formalize the Action Flow Semantics of UML 2.0 Activity Diagrams Accurate Calibration and Scalable Bandwidth Sharing of Multi-Queue SSDs Looking to Personalize Gaze Estimation Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1