提高环氧胶粘剂在CFRP/混凝土粘结中的热工性能

C. Widanage, J. Gamage, V. Attanayake
{"title":"提高环氧胶粘剂在CFRP/混凝土粘结中的热工性能","authors":"C. Widanage, J. Gamage, V. Attanayake","doi":"10.1109/MERCon52712.2021.9525677","DOIUrl":null,"url":null,"abstract":"Epoxy adhesive used as the bonding agent in the Carbon Fibre Reinforced Polymer/concrete bond shows poor thermal performance. Therefore, this experimental study focused on modifying the epoxy adhesive by blending recycled Polyethylene terephthalate (PET) fibres to enhance thermal performance. The single-lap shear test was conducted by varying the fibre content in the epoxy adhesive to determine the optimum PET fibre to develop the modified epoxy adhesive. The optimum PET fibre content was selected as 30% of the volume of epoxy. The modified adhesive showed a successful bond strength enhancement in both ambient and elevated temperature conditions when compared to the pure epoxy adhesive. The mechanical properties were tested for the developed epoxy-based adhesive. The modified epoxy adhesive achieved an average bond strength of 827.31 MPa (at 30 °C) for 150 mm bond length. Although the glass transition temperature of pure epoxy was between 60 °C and 80 °C, it was between 120°C and 150 °C for the modified epoxy adhesive.","PeriodicalId":6855,"journal":{"name":"2021 Moratuwa Engineering Research Conference (MERCon)","volume":"16 1","pages":"281-285"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Thermal Performance of Epoxy Adhesive used in the CFRP/Concrete Bond\",\"authors\":\"C. Widanage, J. Gamage, V. Attanayake\",\"doi\":\"10.1109/MERCon52712.2021.9525677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epoxy adhesive used as the bonding agent in the Carbon Fibre Reinforced Polymer/concrete bond shows poor thermal performance. Therefore, this experimental study focused on modifying the epoxy adhesive by blending recycled Polyethylene terephthalate (PET) fibres to enhance thermal performance. The single-lap shear test was conducted by varying the fibre content in the epoxy adhesive to determine the optimum PET fibre to develop the modified epoxy adhesive. The optimum PET fibre content was selected as 30% of the volume of epoxy. The modified adhesive showed a successful bond strength enhancement in both ambient and elevated temperature conditions when compared to the pure epoxy adhesive. The mechanical properties were tested for the developed epoxy-based adhesive. The modified epoxy adhesive achieved an average bond strength of 827.31 MPa (at 30 °C) for 150 mm bond length. Although the glass transition temperature of pure epoxy was between 60 °C and 80 °C, it was between 120°C and 150 °C for the modified epoxy adhesive.\",\"PeriodicalId\":6855,\"journal\":{\"name\":\"2021 Moratuwa Engineering Research Conference (MERCon)\",\"volume\":\"16 1\",\"pages\":\"281-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Moratuwa Engineering Research Conference (MERCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MERCon52712.2021.9525677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCon52712.2021.9525677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

环氧胶粘剂作为粘结剂用于碳纤维增强聚合物/混凝土粘结时,其热工性能较差。因此,本实验研究的重点是通过掺入回收的聚对苯二甲酸乙二醇酯(PET)纤维来改性环氧胶粘剂,以提高其热性能。通过改变环氧胶粘剂中纤维含量,进行单圈剪切试验,确定开发改性环氧胶粘剂的最佳聚酯纤维。涤纶纤维的最佳掺量为环氧树脂体积的30%。与纯环氧胶粘剂相比,改性胶粘剂在常温和高温条件下都成功地增强了粘结强度。对所研制的环氧基胶粘剂进行了力学性能测试。改性后的环氧胶粘剂在30℃下,在150 mm的粘接长度下,平均粘接强度为827.31 MPa。纯环氧树脂的玻璃化转变温度在60 ~ 80℃之间,而改性环氧胶粘剂的玻璃化转变温度在120 ~ 150℃之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the Thermal Performance of Epoxy Adhesive used in the CFRP/Concrete Bond
Epoxy adhesive used as the bonding agent in the Carbon Fibre Reinforced Polymer/concrete bond shows poor thermal performance. Therefore, this experimental study focused on modifying the epoxy adhesive by blending recycled Polyethylene terephthalate (PET) fibres to enhance thermal performance. The single-lap shear test was conducted by varying the fibre content in the epoxy adhesive to determine the optimum PET fibre to develop the modified epoxy adhesive. The optimum PET fibre content was selected as 30% of the volume of epoxy. The modified adhesive showed a successful bond strength enhancement in both ambient and elevated temperature conditions when compared to the pure epoxy adhesive. The mechanical properties were tested for the developed epoxy-based adhesive. The modified epoxy adhesive achieved an average bond strength of 827.31 MPa (at 30 °C) for 150 mm bond length. Although the glass transition temperature of pure epoxy was between 60 °C and 80 °C, it was between 120°C and 150 °C for the modified epoxy adhesive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Study on Protective Measures against Spalling Slab Concrete Optimization of Hemicellulose Recovery from Rice Straw for Biorefinery: Dilute Acid Pretreatment at Reduced Temperatures An Analytical Design & Optimization approach to enhance Warehouse Operations Design of a Novel 3D-Printed Soft Actuator for Clenched Fist Rehabilitation Process Optimization of Microfibrillated Cellulose Extraction from Cotton Waste Using Response Surface Methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1