连续流动模式下的生物催化:Novozym 435®介导的酰化和去酰化反应对仲醇酶解动力学的一个案例研究

J. Thomas, Martha Daniela Burich, P. Bandeira, Alfredo Ricardo Marques de Oliveira, Leandro Piovan
{"title":"连续流动模式下的生物催化:Novozym 435®介导的酰化和去酰化反应对仲醇酶解动力学的一个案例研究","authors":"J. Thomas, Martha Daniela Burich, P. Bandeira, Alfredo Ricardo Marques de Oliveira, Leandro Piovan","doi":"10.1515/boca-2017-0003","DOIUrl":null,"url":null,"abstract":"Abstract Enzymatic kinetic resolution reactions are a well-established way to achieve optically active compounds. When enzymatic reactions are combined to continuous-flow methodologies, other benefits are added, including reproducibility, optimized energy use, minimized waste generation, among others. In this context, we herein report a case study involving lipase-mediated transesterification by acylation and deacylation reactions of secondary alcohols/esters in batch and continuous-flow modes. Acylation reactions were performed with high values of enantiomeric excess (72 up to >99%) and enantioselectivity (E > 200) for both batch and continuous-flow modes. On the other hand, for deacylation reactions using n-butanol as nucleophile, enatiomeric excess ranged between 38 to >99% and E from 6 to >200 were observed for batch mode. For deacylation reactions in continuous-flow mode, results were disappointing, as in some cases, very low or no conversion was observed. Enantiomeric excess ranged from 16 to >99% and enantioselectivity from 5 to >200 were observed. In terms of productivity, continuous-flow mode reactions were superior in both strategies (acylation: r from 1.1 up to 18.1-fold higher, deacylation: 2.8 up to 7.4- fold higher in continuous-flow than in batch mode).","PeriodicalId":8747,"journal":{"name":"Biocatalysis","volume":"93 1","pages":"27 - 36"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Biocatalysis in continuous-flow mode: A case-study in the enzymatic kinetic resolution of secondary alcohols via acylation and deacylation reactions mediated by Novozym 435®\",\"authors\":\"J. Thomas, Martha Daniela Burich, P. Bandeira, Alfredo Ricardo Marques de Oliveira, Leandro Piovan\",\"doi\":\"10.1515/boca-2017-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Enzymatic kinetic resolution reactions are a well-established way to achieve optically active compounds. When enzymatic reactions are combined to continuous-flow methodologies, other benefits are added, including reproducibility, optimized energy use, minimized waste generation, among others. In this context, we herein report a case study involving lipase-mediated transesterification by acylation and deacylation reactions of secondary alcohols/esters in batch and continuous-flow modes. Acylation reactions were performed with high values of enantiomeric excess (72 up to >99%) and enantioselectivity (E > 200) for both batch and continuous-flow modes. On the other hand, for deacylation reactions using n-butanol as nucleophile, enatiomeric excess ranged between 38 to >99% and E from 6 to >200 were observed for batch mode. For deacylation reactions in continuous-flow mode, results were disappointing, as in some cases, very low or no conversion was observed. Enantiomeric excess ranged from 16 to >99% and enantioselectivity from 5 to >200 were observed. In terms of productivity, continuous-flow mode reactions were superior in both strategies (acylation: r from 1.1 up to 18.1-fold higher, deacylation: 2.8 up to 7.4- fold higher in continuous-flow than in batch mode).\",\"PeriodicalId\":8747,\"journal\":{\"name\":\"Biocatalysis\",\"volume\":\"93 1\",\"pages\":\"27 - 36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/boca-2017-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/boca-2017-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

酶动力学分解反应是一种公认的获得光学活性化合物的方法。当酶促反应与连续流方法相结合时,还增加了其他好处,包括可重复性,优化能源使用,最大限度地减少废物产生等。在这种情况下,我们在此报告一个案例研究涉及脂肪酶介导的酰基化和去酰化反应的仲醇/酯在间歇和连续流动模式。在间歇和连续流动模式下,酰化反应的对映体过量(72 - >99%)和对映体选择性(E > 200)值都很高。另一方面,对于以正丁醇为亲核试剂的去酰化反应,在批处理模式下,对映体过量范围在38 ~ >99%之间,E在6 ~ >200之间。对于连续流动模式下的去酰化反应,结果令人失望,因为在某些情况下,观察到非常低或没有转化。对映体过量范围为16 ~ >99%,对映体选择性范围为5 ~ >200。在生产效率方面,连续流动模式的反应在两种策略中都优于连续流动模式(在连续流动模式下,酰化:r从1.1到18.1倍高,去酰化:2.8到7.4倍,比批处理模式高)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biocatalysis in continuous-flow mode: A case-study in the enzymatic kinetic resolution of secondary alcohols via acylation and deacylation reactions mediated by Novozym 435®
Abstract Enzymatic kinetic resolution reactions are a well-established way to achieve optically active compounds. When enzymatic reactions are combined to continuous-flow methodologies, other benefits are added, including reproducibility, optimized energy use, minimized waste generation, among others. In this context, we herein report a case study involving lipase-mediated transesterification by acylation and deacylation reactions of secondary alcohols/esters in batch and continuous-flow modes. Acylation reactions were performed with high values of enantiomeric excess (72 up to >99%) and enantioselectivity (E > 200) for both batch and continuous-flow modes. On the other hand, for deacylation reactions using n-butanol as nucleophile, enatiomeric excess ranged between 38 to >99% and E from 6 to >200 were observed for batch mode. For deacylation reactions in continuous-flow mode, results were disappointing, as in some cases, very low or no conversion was observed. Enantiomeric excess ranged from 16 to >99% and enantioselectivity from 5 to >200 were observed. In terms of productivity, continuous-flow mode reactions were superior in both strategies (acylation: r from 1.1 up to 18.1-fold higher, deacylation: 2.8 up to 7.4- fold higher in continuous-flow than in batch mode).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rieske Non-Heme Iron Dioxygenases: Applications and Future Perspectives Oxidoreductases: Overview and Practical Applications Microbial Enzymes in Food Processing β-Amylase: General Properties, Mechanism and Panorama of Applications by Immobilization on Nano-Structures Clinical Significance of Enzymes in Disease and Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1