融合建筑与增强袋的视觉词为有效的睡意检测

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Advanced Computational Intelligence and Intelligent Informatics Pub Date : 2023-03-20 DOI:10.20965/jaciii.2023.p0182
V. Vijayan, K. Pushpalatha
{"title":"融合建筑与增强袋的视觉词为有效的睡意检测","authors":"V. Vijayan, K. Pushpalatha","doi":"10.20965/jaciii.2023.p0182","DOIUrl":null,"url":null,"abstract":"Drowsy driving is more hazardous than reckless driving. This study concentrates on capturing the behavioral features of drowsiness from facial images of a driver. The methodology considers scale invariant feature transform matched with the fast library for approximate nearest neighbors for low-level drowsy features extraction. These features are fused with the high-level features extracted from the convolutional layers of a convolutional neural network (CNN). The convolution operation incorporates a model parallelization technique to increase the efficiency of the training and improve the feature identification. Further classification is performed by considering the occurrences of visual words using the softmax layers of the CNN. In contrast to existing state-of-the-art models which require a few seconds to detect drowsiness, this model detects drowsiness in milliseconds. With the model parallelization approach, this model exhibits a high accuracy rate of 83.8% relative to normal CNNs.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"21 1","pages":"182-189"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fused Architecture with Enhanced Bag of Visual Words for Efficient Drowsiness Detection\",\"authors\":\"V. Vijayan, K. Pushpalatha\",\"doi\":\"10.20965/jaciii.2023.p0182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drowsy driving is more hazardous than reckless driving. This study concentrates on capturing the behavioral features of drowsiness from facial images of a driver. The methodology considers scale invariant feature transform matched with the fast library for approximate nearest neighbors for low-level drowsy features extraction. These features are fused with the high-level features extracted from the convolutional layers of a convolutional neural network (CNN). The convolution operation incorporates a model parallelization technique to increase the efficiency of the training and improve the feature identification. Further classification is performed by considering the occurrences of visual words using the softmax layers of the CNN. In contrast to existing state-of-the-art models which require a few seconds to detect drowsiness, this model detects drowsiness in milliseconds. With the model parallelization approach, this model exhibits a high accuracy rate of 83.8% relative to normal CNNs.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"21 1\",\"pages\":\"182-189\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

疲劳驾驶比鲁莽驾驶更危险。这项研究的重点是从司机的面部图像中捕捉困倦的行为特征。该方法考虑尺度不变特征变换与快速近似近邻库相匹配,进行低层次困倦特征提取。这些特征与从卷积神经网络(CNN)的卷积层提取的高级特征融合在一起。卷积运算结合了模型并行化技术,提高了训练效率,改善了特征识别。进一步的分类是通过使用CNN的softmax层来考虑视觉词的出现情况。现有的最先进的模型需要几秒钟来检测睡意,与之相反,这个模型在几毫秒内检测睡意。采用模型并行化方法,与普通cnn相比,该模型的准确率高达83.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fused Architecture with Enhanced Bag of Visual Words for Efficient Drowsiness Detection
Drowsy driving is more hazardous than reckless driving. This study concentrates on capturing the behavioral features of drowsiness from facial images of a driver. The methodology considers scale invariant feature transform matched with the fast library for approximate nearest neighbors for low-level drowsy features extraction. These features are fused with the high-level features extracted from the convolutional layers of a convolutional neural network (CNN). The convolution operation incorporates a model parallelization technique to increase the efficiency of the training and improve the feature identification. Further classification is performed by considering the occurrences of visual words using the softmax layers of the CNN. In contrast to existing state-of-the-art models which require a few seconds to detect drowsiness, this model detects drowsiness in milliseconds. With the model parallelization approach, this model exhibits a high accuracy rate of 83.8% relative to normal CNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
期刊最新文献
The Impact of Individual Heterogeneity on Household Asset Choice: An Empirical Study Based on China Family Panel Studies Private Placement, Investor Sentiment, and Stock Price Anomaly Does Increasing Public Service Expenditure Slow the Long-Term Economic Growth Rate?—Evidence from China Prediction and Characteristic Analysis of Enterprise Digital Transformation Integrating XGBoost and SHAP Industrial Chain Map and Linkage Network Characteristics of Digital Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1