低量子位数下变分特征解的最优量子抽样回归算法

Pedro Rivero, I. Cloet, Z. Sullivan
{"title":"低量子位数下变分特征解的最优量子抽样回归算法","authors":"Pedro Rivero, I. Cloet, Z. Sullivan","doi":"10.26226/morressier.5fa409874d4e91fe5c54b993","DOIUrl":null,"url":null,"abstract":"The VQE algorithm has turned out to be quite expensive to run given the way we currently access quantum processors (i.e. over the cloud). In order to alleviate this issue, we introduce Quantum Sampling Regression (QSR), an alternative hybrid quantum-classical algorithm, and analyze some of its use cases based on time complexity in the low qubit number regime. In exchange for some extra classical resources, this novel strategy is proved to be optimal in terms of the number of samples it requires from the quantum processor. We develop a simple analytical model to evaluate when this algorithm is more efficient than VQE, and, from the same theoretical considerations, establish a threshold above which quantum advantage can occur. Finally, we demonstrate the efficacy of our algorithm for a benchmark problem.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal quantum sampling regression algorithm for variational eigensolving in the low qubit number regime\",\"authors\":\"Pedro Rivero, I. Cloet, Z. Sullivan\",\"doi\":\"10.26226/morressier.5fa409874d4e91fe5c54b993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The VQE algorithm has turned out to be quite expensive to run given the way we currently access quantum processors (i.e. over the cloud). In order to alleviate this issue, we introduce Quantum Sampling Regression (QSR), an alternative hybrid quantum-classical algorithm, and analyze some of its use cases based on time complexity in the low qubit number regime. In exchange for some extra classical resources, this novel strategy is proved to be optimal in terms of the number of samples it requires from the quantum processor. We develop a simple analytical model to evaluate when this algorithm is more efficient than VQE, and, from the same theoretical considerations, establish a threshold above which quantum advantage can occur. Finally, we demonstrate the efficacy of our algorithm for a benchmark problem.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26226/morressier.5fa409874d4e91fe5c54b993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26226/morressier.5fa409874d4e91fe5c54b993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到我们目前访问量子处理器的方式(即通过云),VQE算法的运行成本相当高。为了缓解这一问题,我们引入了量子采样回归(QSR)算法,这是一种替代的量子-经典混合算法,并分析了它在低量子比特数下基于时间复杂度的一些用例。为了换取一些额外的经典资源,这种新策略被证明在量子处理器所需的样本数量方面是最优的。我们开发了一个简单的分析模型来评估该算法何时比VQE更有效,并且从相同的理论考虑出发,建立了量子优势可能发生的阈值。最后,我们证明了我们的算法对一个基准问题的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An optimal quantum sampling regression algorithm for variational eigensolving in the low qubit number regime
The VQE algorithm has turned out to be quite expensive to run given the way we currently access quantum processors (i.e. over the cloud). In order to alleviate this issue, we introduce Quantum Sampling Regression (QSR), an alternative hybrid quantum-classical algorithm, and analyze some of its use cases based on time complexity in the low qubit number regime. In exchange for some extra classical resources, this novel strategy is proved to be optimal in terms of the number of samples it requires from the quantum processor. We develop a simple analytical model to evaluate when this algorithm is more efficient than VQE, and, from the same theoretical considerations, establish a threshold above which quantum advantage can occur. Finally, we demonstrate the efficacy of our algorithm for a benchmark problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Quantum Machine Learning A Wave Nature-Based Interpretation of The Nonclassical Feature of Photon Bunching On A Beam Splitter The Future of Quantum Theory: A Way Out of the Impasse Partial Measurements of Quantum Systems Emergence of the Classical from within the Quantum Universe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1