甲烷包合物矿床捕获甲烷气体的调度模型

Q3 Environmental Science Tikrit Journal of Engineering Sciences Pub Date : 2023-01-01 DOI:10.21272/jes.2023.10(1).g1
U. O. Anyanwu, O. C. Okafor, C. Nkwor
{"title":"甲烷包合物矿床捕获甲烷气体的调度模型","authors":"U. O. Anyanwu, O. C. Okafor, C. Nkwor","doi":"10.21272/jes.2023.10(1).g1","DOIUrl":null,"url":null,"abstract":"The execution of any project type, especially engineering-based projects, is usually time-based, efficiency-driven, and cost-effective. These factors are the deterministic parameters that engineer successful project completion. The application of scheduling models remains the best technique for achieving these three factors to their best degrees. Therefore, this study was centered on the impact study of applying the scheduling model in harvesting methane gas from methane clathrates deposits. Various data on gas hydrate reserves in the Niger Delta region of Nigeria were collected from relevant literature, studied, and analyzed. Such data includes the pictorial representation and description of the gas hydrate site in the Niger Delta region of Africa and various shapes and sizes of gas hydrate perimeters in the studied region positions of the gas reserves. The normal faults are projected on a bathymetric map of the study area and the bathymetric map of the Pockmark (with the stippled black line indicating the sea floor projection of a prominent N-S trending fracture in 3-D seismic data). As a type of scheduling model, the critical path method (CPM) was applied to develop the project’s work sequence using the activity on node (AON) architectural technique and Primavera P6 software after carefully identifying the primary operations involved in the project and their respective sub-operations or work breakdown structure (WBS). The risks associated with each operation were meticulously identified, with their consequent impact and exposure matrix determined using probabilistic measures of 1-5 according to the degree of the risk. Mitigation strategies were recommended for all the identified risks. The cost benefits of the project were X-rayed using parameters such as net present value (NPV), project payback time, internal rate of return (IRR), and net cumulative cash flow. From the results obtained, the CPM schedule showed that the project execution would last approximately ten months. All the operations involved in the project execution plan were all critical, proving that each activity should be completed within the scheduled run period. Else, the entire project would be affected. Also, risks with a high exposure matrix of 25, 12, and 4 were mitigated to 5, 3, and 0 using the recommended strategies. In addition, the project yielded an NPV of $20,736,951.04for the run period of 22 years after the execution of the project, IRR of 14%, and a payback time of 8 years (adding 2023 – the year of project execution) provided the daily production rate is maintained within 60,000-65,000MSCF/day. If the daily production rate increases, the cash flow and payback time will decrease. Therefore, the application of CPM in extracting methane gas from gas hydrates positively affected the operation through the vivid insights provided in workflow pattern/methodology risks effects and cost benefits.","PeriodicalId":30589,"journal":{"name":"Tikrit Journal of Engineering Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Scheduling Model in Capturing Methane Gas from\\nMethane Clathrates Deposits\",\"authors\":\"U. O. Anyanwu, O. C. Okafor, C. Nkwor\",\"doi\":\"10.21272/jes.2023.10(1).g1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The execution of any project type, especially engineering-based projects, is usually time-based, efficiency-driven, and cost-effective. These factors are the deterministic parameters that engineer successful project completion. The application of scheduling models remains the best technique for achieving these three factors to their best degrees. Therefore, this study was centered on the impact study of applying the scheduling model in harvesting methane gas from methane clathrates deposits. Various data on gas hydrate reserves in the Niger Delta region of Nigeria were collected from relevant literature, studied, and analyzed. Such data includes the pictorial representation and description of the gas hydrate site in the Niger Delta region of Africa and various shapes and sizes of gas hydrate perimeters in the studied region positions of the gas reserves. The normal faults are projected on a bathymetric map of the study area and the bathymetric map of the Pockmark (with the stippled black line indicating the sea floor projection of a prominent N-S trending fracture in 3-D seismic data). As a type of scheduling model, the critical path method (CPM) was applied to develop the project’s work sequence using the activity on node (AON) architectural technique and Primavera P6 software after carefully identifying the primary operations involved in the project and their respective sub-operations or work breakdown structure (WBS). The risks associated with each operation were meticulously identified, with their consequent impact and exposure matrix determined using probabilistic measures of 1-5 according to the degree of the risk. Mitigation strategies were recommended for all the identified risks. The cost benefits of the project were X-rayed using parameters such as net present value (NPV), project payback time, internal rate of return (IRR), and net cumulative cash flow. From the results obtained, the CPM schedule showed that the project execution would last approximately ten months. All the operations involved in the project execution plan were all critical, proving that each activity should be completed within the scheduled run period. Else, the entire project would be affected. Also, risks with a high exposure matrix of 25, 12, and 4 were mitigated to 5, 3, and 0 using the recommended strategies. In addition, the project yielded an NPV of $20,736,951.04for the run period of 22 years after the execution of the project, IRR of 14%, and a payback time of 8 years (adding 2023 – the year of project execution) provided the daily production rate is maintained within 60,000-65,000MSCF/day. If the daily production rate increases, the cash flow and payback time will decrease. Therefore, the application of CPM in extracting methane gas from gas hydrates positively affected the operation through the vivid insights provided in workflow pattern/methodology risks effects and cost benefits.\",\"PeriodicalId\":30589,\"journal\":{\"name\":\"Tikrit Journal of Engineering Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tikrit Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/jes.2023.10(1).g1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jes.2023.10(1).g1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

任何项目类型的执行,特别是基于工程的项目,通常是基于时间的、效率驱动的和成本效益的。这些因素是工程项目成功完成的决定性参数。调度模型的应用仍然是实现这三个因素的最佳程度的最佳技术。因此,本研究的重点是应用调度模型对甲烷包合物矿床开采甲烷气的影响研究。从相关文献中收集、研究、分析了尼日利亚尼日尔三角洲地区天然气水合物储量的各种数据。这些数据包括非洲尼日尔三角洲地区天然气水合物位置的图形表示和描述,以及研究区域天然气储量位置的各种形状和大小的天然气水合物周界。正断层投影在研究区测深图和麻克马克测深图上(黑点线表示三维地震资料中明显的南北向裂缝的海底投影)。关键路径法(critical path method, CPM)作为一种调度模型,在仔细识别项目中涉及的主要操作及其各自的子操作或工作分解结构(work breakdown structure, WBS)后,利用节点活动(AON)架构技术和Primavera P6软件开发项目的工作序列。与每项操作相关的风险都经过仔细识别,并根据风险程度使用1-5的概率度量来确定其后续影响和暴露矩阵。针对所有已确定的风险建议了缓解战略。项目的成本效益使用诸如净现值(NPV)、项目回收期、内部收益率(IRR)和净累积现金流等参数进行x射线分析。从获得的结果来看,CPM进度表显示项目执行将持续大约10个月。项目执行计划中涉及的所有操作都是关键的,证明每个活动都应在计划的运行期内完成。否则,整个项目都会受到影响。此外,使用推荐的策略,暴露矩阵为25、12和4的高风险被降低到5、3和0。此外,在项目执行后的22年运行期内,该项目的净现值为20,736,951.04美元,内部收益率为14%,投资回收期为8年(加上项目执行年2023年),前提是日产量保持在60,000- 65000万立方英尺/天之间。如果日产量增加,现金流和投资回收期就会减少。因此,通过在工作流程模式/方法中提供的生动见解,CPM在天然气水合物中提取甲烷气体中的应用对作业产生了积极的影响,风险影响和成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Scheduling Model in Capturing Methane Gas from Methane Clathrates Deposits
The execution of any project type, especially engineering-based projects, is usually time-based, efficiency-driven, and cost-effective. These factors are the deterministic parameters that engineer successful project completion. The application of scheduling models remains the best technique for achieving these three factors to their best degrees. Therefore, this study was centered on the impact study of applying the scheduling model in harvesting methane gas from methane clathrates deposits. Various data on gas hydrate reserves in the Niger Delta region of Nigeria were collected from relevant literature, studied, and analyzed. Such data includes the pictorial representation and description of the gas hydrate site in the Niger Delta region of Africa and various shapes and sizes of gas hydrate perimeters in the studied region positions of the gas reserves. The normal faults are projected on a bathymetric map of the study area and the bathymetric map of the Pockmark (with the stippled black line indicating the sea floor projection of a prominent N-S trending fracture in 3-D seismic data). As a type of scheduling model, the critical path method (CPM) was applied to develop the project’s work sequence using the activity on node (AON) architectural technique and Primavera P6 software after carefully identifying the primary operations involved in the project and their respective sub-operations or work breakdown structure (WBS). The risks associated with each operation were meticulously identified, with their consequent impact and exposure matrix determined using probabilistic measures of 1-5 according to the degree of the risk. Mitigation strategies were recommended for all the identified risks. The cost benefits of the project were X-rayed using parameters such as net present value (NPV), project payback time, internal rate of return (IRR), and net cumulative cash flow. From the results obtained, the CPM schedule showed that the project execution would last approximately ten months. All the operations involved in the project execution plan were all critical, proving that each activity should be completed within the scheduled run period. Else, the entire project would be affected. Also, risks with a high exposure matrix of 25, 12, and 4 were mitigated to 5, 3, and 0 using the recommended strategies. In addition, the project yielded an NPV of $20,736,951.04for the run period of 22 years after the execution of the project, IRR of 14%, and a payback time of 8 years (adding 2023 – the year of project execution) provided the daily production rate is maintained within 60,000-65,000MSCF/day. If the daily production rate increases, the cash flow and payback time will decrease. Therefore, the application of CPM in extracting methane gas from gas hydrates positively affected the operation through the vivid insights provided in workflow pattern/methodology risks effects and cost benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
56
审稿时长
8 weeks
期刊最新文献
Generative AI Chatbot for Engineering Scientific Journal MnO2 Nano Particles Modified a Double Layer Cathode Reactor for an Efficient Removal of DBT in Diesel Underwater Wireless Optical Communication for IOT using Coding MIMO Diversity Climate Change’s Impacts on Drought in Upper Zab Basin, Iraq: A Case Study Cascaded H–Bridge Multilevel Inverter: Review of Topologies and Pulse Width Modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1