从实例研究探讨倾斜构造对微震勘探的影响

K. Okamoto, S. Tsuno
{"title":"从实例研究探讨倾斜构造对微震勘探的影响","authors":"K. Okamoto, S. Tsuno","doi":"10.3997/2352-8265.20140201","DOIUrl":null,"url":null,"abstract":"Shallow S-wave velocity structures are estimated from dispersion curves of phase velocity, H/V spectral ratios, etc., using microtremor exploration technique. However the estimation is originally based on the assumption that layers of media are horizontally stratified. So, if layers of media incline or are discontinued, the estimated structures have errors to some extent. In this study, we tested a procedure of microtremor exploration for a dipping structure and examined the influence of the horizontal stratification assumption on the estimated structure. The followings are brief description of our procedure. At first, we determined S-wave velocity structures apart from the dipping area as references using the SPatial Auto Correlation (SPAC) method. The corresponding fundamental peak frequency of Rayleigh wave ellipticity was also obtained. Using the information from the reference structures, the dipping structure was determined by the H/V spectral ratios which were obtained along the dipping structure under the assumption of the horizontal stratification. We found that the fundamental peak frequency shifts toward lower frequency smoothly as the structure becomes deeper. Using the determined structure, we numerically calculated influence range of the dip on the wave filed. As a result, it was revealed that the structure within one wavelength likely gives effect on the wave field and disturbs the H/V spectral ratios.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of influence of dipping structures on microtremor exploration from case study research\",\"authors\":\"K. Okamoto, S. Tsuno\",\"doi\":\"10.3997/2352-8265.20140201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shallow S-wave velocity structures are estimated from dispersion curves of phase velocity, H/V spectral ratios, etc., using microtremor exploration technique. However the estimation is originally based on the assumption that layers of media are horizontally stratified. So, if layers of media incline or are discontinued, the estimated structures have errors to some extent. In this study, we tested a procedure of microtremor exploration for a dipping structure and examined the influence of the horizontal stratification assumption on the estimated structure. The followings are brief description of our procedure. At first, we determined S-wave velocity structures apart from the dipping area as references using the SPatial Auto Correlation (SPAC) method. The corresponding fundamental peak frequency of Rayleigh wave ellipticity was also obtained. Using the information from the reference structures, the dipping structure was determined by the H/V spectral ratios which were obtained along the dipping structure under the assumption of the horizontal stratification. We found that the fundamental peak frequency shifts toward lower frequency smoothly as the structure becomes deeper. Using the determined structure, we numerically calculated influence range of the dip on the wave filed. As a result, it was revealed that the structure within one wavelength likely gives effect on the wave field and disturbs the H/V spectral ratios.\",\"PeriodicalId\":14836,\"journal\":{\"name\":\"Japan Geoscience Union\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Geoscience Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2352-8265.20140201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Geoscience Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2352-8265.20140201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用微震勘探技术,从相速度频散曲线、H/V谱比等方面估计了浅层横波速度结构。然而,最初的估计是基于假设介质层是水平分层的。因此,如果介质层倾斜或中断,则估计结构有一定的误差。在本研究中,我们测试了一种倾斜构造的微震勘探方法,并检验了水平分层假设对估计构造的影响。以下是我们程序的简要说明。首先,利用空间自相关(SPAC)方法确定倾斜区以外的s波速度结构作为参考。得到了相应的瑞利波椭圆度基频峰值。利用参考构造的信息,在水平分层假设下,利用沿倾斜构造获得的H/V谱比确定倾斜构造。我们发现,随着结构的加深,基频峰值向低频平滑移动。利用确定的结构,数值计算了倾角对波场的影响范围。结果表明,在一个波长内的结构可能对波场产生影响,并扰乱了H/V光谱比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of influence of dipping structures on microtremor exploration from case study research
Shallow S-wave velocity structures are estimated from dispersion curves of phase velocity, H/V spectral ratios, etc., using microtremor exploration technique. However the estimation is originally based on the assumption that layers of media are horizontally stratified. So, if layers of media incline or are discontinued, the estimated structures have errors to some extent. In this study, we tested a procedure of microtremor exploration for a dipping structure and examined the influence of the horizontal stratification assumption on the estimated structure. The followings are brief description of our procedure. At first, we determined S-wave velocity structures apart from the dipping area as references using the SPatial Auto Correlation (SPAC) method. The corresponding fundamental peak frequency of Rayleigh wave ellipticity was also obtained. Using the information from the reference structures, the dipping structure was determined by the H/V spectral ratios which were obtained along the dipping structure under the assumption of the horizontal stratification. We found that the fundamental peak frequency shifts toward lower frequency smoothly as the structure becomes deeper. Using the determined structure, we numerically calculated influence range of the dip on the wave filed. As a result, it was revealed that the structure within one wavelength likely gives effect on the wave field and disturbs the H/V spectral ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tectonic Landform and Paleoseismic Activity of the Northernmost Sumatran Fault, Aceh Province, Indonesia Pressure-to-depth conversion models for metamorphic rocks: derivation and applications Standardized Variability Index (SVI): A multiscale index to assess the variability of precipitation Overpressured underthrust sediment in the Nankai Trough forearc inferred from high-frequency receiver function inversion Simple Topographic Parameter for Along-trench Friction Distribution of Shallow Megathrust Fault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1