基于前馈-反传播神经网络策略的短期可再生能源预测

Dhanalaxmi H R, A. G S, Sunil Kumar A V
{"title":"基于前馈-反传播神经网络策略的短期可再生能源预测","authors":"Dhanalaxmi H R, A. G S, Sunil Kumar A V","doi":"10.46300/9106.2022.16.134","DOIUrl":null,"url":null,"abstract":"The fundamental inputs used as a renewable energy source are wind speed and solar radiation. Both parameters are very nonlinear and depending on their surroundings. As a result, reliable prediction of these characteristics is required for usage in a variety of agricultural, industrial, transportation, and environmental applications since they reduce greenhouse gas emissions and are environmentally benign. In this study, we used a Feed Forward Back Propagation Neural Network (FFBPN) technique to predict proper data such as temperature, relative moisture, sun radiations, rain, and wind speed. The FFBPN will be trained in such a way that it can conduct hybrid forecasting with little changes to the programming codes, ranging from hourly (short term forecasting) to daily forecasting (medium term forecasting). This feature is one of the significant improvements, showing the suggested hybrid renewable energy forecasting system's high robustness. Because the hybrid forecasting system is a unique approach, the system's accuracy will be determined by comparing the findings to the corresponding values of the persistent model, a stand-alone forecasting model. Finally, the completely created system package could be sold and/or used in future research initiatives to help researcher’s analyses, validate, and illustrate their models across a variety of areas.","PeriodicalId":13929,"journal":{"name":"International Journal of Circuits, Systems and Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short Term Renewable Energy Forecasting Based on Feed Forward Back Propagation Neural Network Strategy\",\"authors\":\"Dhanalaxmi H R, A. G S, Sunil Kumar A V\",\"doi\":\"10.46300/9106.2022.16.134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fundamental inputs used as a renewable energy source are wind speed and solar radiation. Both parameters are very nonlinear and depending on their surroundings. As a result, reliable prediction of these characteristics is required for usage in a variety of agricultural, industrial, transportation, and environmental applications since they reduce greenhouse gas emissions and are environmentally benign. In this study, we used a Feed Forward Back Propagation Neural Network (FFBPN) technique to predict proper data such as temperature, relative moisture, sun radiations, rain, and wind speed. The FFBPN will be trained in such a way that it can conduct hybrid forecasting with little changes to the programming codes, ranging from hourly (short term forecasting) to daily forecasting (medium term forecasting). This feature is one of the significant improvements, showing the suggested hybrid renewable energy forecasting system's high robustness. Because the hybrid forecasting system is a unique approach, the system's accuracy will be determined by comparing the findings to the corresponding values of the persistent model, a stand-alone forecasting model. Finally, the completely created system package could be sold and/or used in future research initiatives to help researcher’s analyses, validate, and illustrate their models across a variety of areas.\",\"PeriodicalId\":13929,\"journal\":{\"name\":\"International Journal of Circuits, Systems and Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9106.2022.16.134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuits, Systems and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9106.2022.16.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

作为可再生能源的基本输入是风速和太阳辐射。这两个参数都是非常非线性的并且依赖于它们周围的环境。因此,需要对这些特性进行可靠的预测,以便在各种农业、工业、运输和环境应用中使用,因为它们减少了温室气体排放,对环境无害。在这项研究中,我们使用前馈反向传播神经网络(FFBPN)技术来预测适当的数据,如温度、相对湿度、太阳辐射、降雨和风速。FFBPN将以这样一种方式进行训练,即它可以在很少改变编程代码的情况下进行混合预测,范围从每小时(短期预测)到每天(中期预测)。这一特征是本文提出的混合可再生能源预测系统鲁棒性较好的重要改进之一。由于混合预测系统是一种独特的方法,系统的准确性将通过将结果与持久模型(一个独立的预测模型)的相应值进行比较来确定。最后,完全创建的系统包可以出售和/或用于未来的研究计划,以帮助研究人员分析、验证和说明他们在各种领域的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short Term Renewable Energy Forecasting Based on Feed Forward Back Propagation Neural Network Strategy
The fundamental inputs used as a renewable energy source are wind speed and solar radiation. Both parameters are very nonlinear and depending on their surroundings. As a result, reliable prediction of these characteristics is required for usage in a variety of agricultural, industrial, transportation, and environmental applications since they reduce greenhouse gas emissions and are environmentally benign. In this study, we used a Feed Forward Back Propagation Neural Network (FFBPN) technique to predict proper data such as temperature, relative moisture, sun radiations, rain, and wind speed. The FFBPN will be trained in such a way that it can conduct hybrid forecasting with little changes to the programming codes, ranging from hourly (short term forecasting) to daily forecasting (medium term forecasting). This feature is one of the significant improvements, showing the suggested hybrid renewable energy forecasting system's high robustness. Because the hybrid forecasting system is a unique approach, the system's accuracy will be determined by comparing the findings to the corresponding values of the persistent model, a stand-alone forecasting model. Finally, the completely created system package could be sold and/or used in future research initiatives to help researcher’s analyses, validate, and illustrate their models across a variety of areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Circuits, Systems and Signal Processing
International Journal of Circuits, Systems and Signal Processing Engineering-Electrical and Electronic Engineering
自引率
0.00%
发文量
155
期刊最新文献
Stochastic Machine Learning Models for Mutation Rate Analysis of Malignant Cancer Cells in Patients with Acute Lymphoblastic Leukemia Detecting Small Objects Using a Smartphone and Neon Camera Optimization of New Energy Vehicle Road Noise Problem Based on Finite Element Analysis Method Base Elements for Artificial Neural Network: Structure Modeling, Production, Properties Distributed Generation Hosting Capacity Evaluation for Distribution Networks Considering Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1