消费者在循环:消费者作为住宅智能能源系统的一部分

M. Levorato, N. Ahmed, Y. Zhang
{"title":"消费者在循环:消费者作为住宅智能能源系统的一部分","authors":"M. Levorato, N. Ahmed, Y. Zhang","doi":"10.1109/SmartGridComm.2014.7007739","DOIUrl":null,"url":null,"abstract":"A novel framework for residential smart energy systems is proposed. The model integrates the consumer behavior in the dynamics of the technological and environmental components of the system. The objective is to classify and optimize the whole system, which includes the dynamics of the consumer. The framework is based on Markov process, model detection and Hidden Markov Model Theory. The behavior of the consumer is classified from a sequence of available observations within a set of reference classes. The detected class is used as prior information to detect the state of the system and provide feedback to the consumer to reduce the probability that undesirable states occur within a time window.","PeriodicalId":6499,"journal":{"name":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"11 1","pages":"758-763"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Consumer in-the-loop: Consumers as part of residential smart energy systems\",\"authors\":\"M. Levorato, N. Ahmed, Y. Zhang\",\"doi\":\"10.1109/SmartGridComm.2014.7007739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel framework for residential smart energy systems is proposed. The model integrates the consumer behavior in the dynamics of the technological and environmental components of the system. The objective is to classify and optimize the whole system, which includes the dynamics of the consumer. The framework is based on Markov process, model detection and Hidden Markov Model Theory. The behavior of the consumer is classified from a sequence of available observations within a set of reference classes. The detected class is used as prior information to detect the state of the system and provide feedback to the consumer to reduce the probability that undesirable states occur within a time window.\",\"PeriodicalId\":6499,\"journal\":{\"name\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":\"11 1\",\"pages\":\"758-763\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2014.7007739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2014.7007739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种新的住宅智能能源系统框架。该模型将消费者行为整合到系统的技术和环境组件的动态中。目标是分类和优化整个系统,其中包括消费者的动态。该框架基于马尔可夫过程、模型检测和隐马尔可夫模型理论。消费者的行为根据一组参考类中的一系列可用观察结果进行分类。检测到的类被用作检测系统状态的先验信息,并向消费者提供反馈,以减少在时间窗口内出现不良状态的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Consumer in-the-loop: Consumers as part of residential smart energy systems
A novel framework for residential smart energy systems is proposed. The model integrates the consumer behavior in the dynamics of the technological and environmental components of the system. The objective is to classify and optimize the whole system, which includes the dynamics of the consumer. The framework is based on Markov process, model detection and Hidden Markov Model Theory. The behavior of the consumer is classified from a sequence of available observations within a set of reference classes. The detected class is used as prior information to detect the state of the system and provide feedback to the consumer to reduce the probability that undesirable states occur within a time window.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Household Level Electricity Load Forecasting Using Echo State Network Roaming electric vehicle charging and billing: An anonymous multi-user protocol Generating realistic Smart Grid communication topologies based on real-data Cooperative closed-loop MIMO selective transmissions in a HV environment Integration of V2H/V2G hybrid system for demand response in distribution network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1