C. Doux, E. Baxter, P. Lemos, C. Chang, A. Alarcon, A. Amon, A. Campos, A. Choi, M. Gatti, D. Gruen, M. Jarvis, N. MacCrann, Y. Park, J. Prat, M. Rau, M. Raveri, S. Samuroff, J. DeRose, W. Hartley, B. Hoyle, M. Troxel, J. Zuntz, T. Abbott, M. Aguena, S. Allam, J. Annis, S. Ávila, David Bacon, E. Bertin, S. Bhargava, D. Brooks, D. Burke, M. C. Kind, J. Carretero, R. Cawthon, M. Costanzi, L. Costa, M. Pereira, S. Desai, H. Diehl, J. Dietrich, P. Doel, S. Everett, I. Ferrero, P. Fosalba, J. Frieman, J. Garcı́a-Bellido, D. Gerdes, T. Giannantonio, R. Gruendl, J. Gschwend, G. Gutiérrez, S. Hinton, D. Hollowood, K. Honscheid, E. Huff, D. Huterer, B. Jain, D. James, E. Krause, K. Kuehn, N. Kuropatkin, O. Lahav, C. Lidman, M. Lima, M. Maia, F. Menanteau, R. Miquel, R. Morgan, J. Muir, R. Ogando, A. Palmese, F. Paz-Chinchón, A. Plazas, E. Sanchez, Scarpine, M. Schubnell, S. Serrano, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. Swanson, G. Tarlé, Chun-Hao To, D. Tucker, T. Varga, J. Weller, R. Wilkinson, A. Alarcon,
{"title":"联合宇宙探测器暗能量测量内部一致性检验与后验预测分布分析","authors":"C. Doux, E. Baxter, P. Lemos, C. Chang, A. Alarcon, A. Amon, A. Campos, A. Choi, M. Gatti, D. Gruen, M. Jarvis, N. MacCrann, Y. Park, J. Prat, M. Rau, M. Raveri, S. Samuroff, J. DeRose, W. Hartley, B. Hoyle, M. Troxel, J. Zuntz, T. Abbott, M. Aguena, S. Allam, J. Annis, S. Ávila, David Bacon, E. Bertin, S. Bhargava, D. Brooks, D. Burke, M. C. Kind, J. Carretero, R. Cawthon, M. Costanzi, L. Costa, M. Pereira, S. Desai, H. Diehl, J. Dietrich, P. Doel, S. Everett, I. Ferrero, P. Fosalba, J. Frieman, J. Garcı́a-Bellido, D. Gerdes, T. Giannantonio, R. Gruendl, J. Gschwend, G. Gutiérrez, S. Hinton, D. Hollowood, K. Honscheid, E. Huff, D. Huterer, B. Jain, D. James, E. Krause, K. Kuehn, N. Kuropatkin, O. Lahav, C. Lidman, M. Lima, M. Maia, F. Menanteau, R. Miquel, R. Morgan, J. Muir, R. Ogando, A. Palmese, F. Paz-Chinchón, A. Plazas, E. Sanchez, Scarpine, M. Schubnell, S. Serrano, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. Swanson, G. Tarlé, Chun-Hao To, D. Tucker, T. Varga, J. Weller, R. Wilkinson, A. Alarcon,","doi":"10.1093/MNRAS/STAB526","DOIUrl":null,"url":null,"abstract":"Beyond-$\\Lambda$CDM physics or systematic errors may cause subsets of a cosmological data set to appear inconsistent when analyzed assuming $\\Lambda$CDM. We present an application of internal consistency tests to measurements from the Dark Energy Survey Year 1 (DES Y1) joint probes analysis. Our analysis relies on computing the posterior predictive distribution (PPD) for these data under the assumption of $\\Lambda$CDM. We find that the DES Y1 data have an acceptable goodness of fit to $\\Lambda$CDM, with a probability of finding a worse fit by random chance of ${p = 0.046}$. Using numerical PPD tests, supplemented by graphical checks, we show that most of the data vector appears completely consistent with expectations, although we observe a small tension between large- and small-scale measurements. A small part (roughly 1.5%) of the data vector shows an unusually large departure from expectations; excluding this part of the data has negligible impact on cosmological constraints, but does significantly improve the $p$-value to 0.10. The methodology developed here will be applied to test the consistency of DES Year 3 joint probes data sets.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Dark energy survey internal consistency tests of the joint cosmological probes analysis with posterior predictive distributions\",\"authors\":\"C. Doux, E. Baxter, P. Lemos, C. Chang, A. Alarcon, A. Amon, A. Campos, A. Choi, M. Gatti, D. Gruen, M. Jarvis, N. MacCrann, Y. Park, J. Prat, M. Rau, M. Raveri, S. Samuroff, J. DeRose, W. Hartley, B. Hoyle, M. Troxel, J. Zuntz, T. Abbott, M. Aguena, S. Allam, J. Annis, S. Ávila, David Bacon, E. Bertin, S. Bhargava, D. Brooks, D. Burke, M. C. Kind, J. Carretero, R. Cawthon, M. Costanzi, L. Costa, M. Pereira, S. Desai, H. Diehl, J. Dietrich, P. Doel, S. Everett, I. Ferrero, P. Fosalba, J. Frieman, J. Garcı́a-Bellido, D. Gerdes, T. Giannantonio, R. Gruendl, J. Gschwend, G. Gutiérrez, S. Hinton, D. Hollowood, K. Honscheid, E. Huff, D. Huterer, B. Jain, D. James, E. Krause, K. Kuehn, N. Kuropatkin, O. Lahav, C. Lidman, M. Lima, M. Maia, F. Menanteau, R. Miquel, R. Morgan, J. Muir, R. Ogando, A. Palmese, F. Paz-Chinchón, A. Plazas, E. Sanchez, Scarpine, M. Schubnell, S. Serrano, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. Swanson, G. Tarlé, Chun-Hao To, D. Tucker, T. Varga, J. Weller, R. Wilkinson, A. Alarcon,\",\"doi\":\"10.1093/MNRAS/STAB526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beyond-$\\\\Lambda$CDM physics or systematic errors may cause subsets of a cosmological data set to appear inconsistent when analyzed assuming $\\\\Lambda$CDM. We present an application of internal consistency tests to measurements from the Dark Energy Survey Year 1 (DES Y1) joint probes analysis. Our analysis relies on computing the posterior predictive distribution (PPD) for these data under the assumption of $\\\\Lambda$CDM. We find that the DES Y1 data have an acceptable goodness of fit to $\\\\Lambda$CDM, with a probability of finding a worse fit by random chance of ${p = 0.046}$. Using numerical PPD tests, supplemented by graphical checks, we show that most of the data vector appears completely consistent with expectations, although we observe a small tension between large- and small-scale measurements. A small part (roughly 1.5%) of the data vector shows an unusually large departure from expectations; excluding this part of the data has negligible impact on cosmological constraints, but does significantly improve the $p$-value to 0.10. The methodology developed here will be applied to test the consistency of DES Year 3 joint probes data sets.\",\"PeriodicalId\":8431,\"journal\":{\"name\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/MNRAS/STAB526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/MNRAS/STAB526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dark energy survey internal consistency tests of the joint cosmological probes analysis with posterior predictive distributions
Beyond-$\Lambda$CDM physics or systematic errors may cause subsets of a cosmological data set to appear inconsistent when analyzed assuming $\Lambda$CDM. We present an application of internal consistency tests to measurements from the Dark Energy Survey Year 1 (DES Y1) joint probes analysis. Our analysis relies on computing the posterior predictive distribution (PPD) for these data under the assumption of $\Lambda$CDM. We find that the DES Y1 data have an acceptable goodness of fit to $\Lambda$CDM, with a probability of finding a worse fit by random chance of ${p = 0.046}$. Using numerical PPD tests, supplemented by graphical checks, we show that most of the data vector appears completely consistent with expectations, although we observe a small tension between large- and small-scale measurements. A small part (roughly 1.5%) of the data vector shows an unusually large departure from expectations; excluding this part of the data has negligible impact on cosmological constraints, but does significantly improve the $p$-value to 0.10. The methodology developed here will be applied to test the consistency of DES Year 3 joint probes data sets.