输电线路切换对电力系统运行状态的概率影响

P. Dehghanian, M. Kezunovic
{"title":"输电线路切换对电力系统运行状态的概率影响","authors":"P. Dehghanian, M. Kezunovic","doi":"10.1109/TDC.2016.7519884","DOIUrl":null,"url":null,"abstract":"Power system topology control as a planned corrective action in face of contingencies and also as a measure for achieving economic gains in real time market operation has been recently studied as an enhancement in hour- and day-ahead operations. Although attractive from the reliability and economic standpoint, the attention must be paid to the impact on the power system operating states following the switching implementation to make sure the system security performance in the new migrated operating state is not jeopardized. This paper suggests a probabilistic measure to foresee the likelihood of experiencing undesirable operating state following execution of an optimal hour-ahead switching plan. The presented approach can also be helpful in selecting the most practical switching action when the optimization engine can provide multiple optimal switching scenarios. The proposed tool is tested on a modified IEEE 118-Bus Test System to demonstrate its applicability and effectiveness.","PeriodicalId":6497,"journal":{"name":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Probabilistic impact of transmission line switching on power system operating states\",\"authors\":\"P. Dehghanian, M. Kezunovic\",\"doi\":\"10.1109/TDC.2016.7519884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power system topology control as a planned corrective action in face of contingencies and also as a measure for achieving economic gains in real time market operation has been recently studied as an enhancement in hour- and day-ahead operations. Although attractive from the reliability and economic standpoint, the attention must be paid to the impact on the power system operating states following the switching implementation to make sure the system security performance in the new migrated operating state is not jeopardized. This paper suggests a probabilistic measure to foresee the likelihood of experiencing undesirable operating state following execution of an optimal hour-ahead switching plan. The presented approach can also be helpful in selecting the most practical switching action when the optimization engine can provide multiple optimal switching scenarios. The proposed tool is tested on a modified IEEE 118-Bus Test System to demonstrate its applicability and effectiveness.\",\"PeriodicalId\":6497,\"journal\":{\"name\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2016.7519884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2016.7519884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

电力系统拓扑控制作为一种面对突发事件的有计划的纠正措施,也是在实时市场运行中实现经济效益的措施,最近被研究作为一种小时和日前运行的增强。虽然从可靠性和经济的角度来看是有吸引力的,但必须注意切换实施后对电力系统运行状态的影响,以确保在新的迁移运行状态下不损害系统的安全性能。本文提出了一种概率度量方法来预测在执行最优一小时前切换计划后出现不良运行状态的可能性。当优化引擎可以提供多个最优切换场景时,所提出的方法也有助于选择最实际的切换动作。在改进的IEEE 118总线测试系统上对该工具进行了测试,验证了其适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic impact of transmission line switching on power system operating states
Power system topology control as a planned corrective action in face of contingencies and also as a measure for achieving economic gains in real time market operation has been recently studied as an enhancement in hour- and day-ahead operations. Although attractive from the reliability and economic standpoint, the attention must be paid to the impact on the power system operating states following the switching implementation to make sure the system security performance in the new migrated operating state is not jeopardized. This paper suggests a probabilistic measure to foresee the likelihood of experiencing undesirable operating state following execution of an optimal hour-ahead switching plan. The presented approach can also be helpful in selecting the most practical switching action when the optimization engine can provide multiple optimal switching scenarios. The proposed tool is tested on a modified IEEE 118-Bus Test System to demonstrate its applicability and effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast evaluation of probabilistic total transfer capability considering multiple wind farms An automated model based fault locating method for distribution systems Fault location identification of a hybrid HVDC-VSC system containing cable and overhead line segments using transient data Conductor corrosion inspection of aluminum conductor steel reinforced transmission lines Microgrid load management and control strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1