基于雷达-阿米达斯复合降水的中尺度流域径流分析及基于降雨特征分类的验证

M. Ishizuka, H. Yoshida, T. Miyazaki
{"title":"基于雷达-阿米达斯复合降水的中尺度流域径流分析及基于降雨特征分类的验证","authors":"M. Ishizuka, H. Yoshida, T. Miyazaki","doi":"10.2208/JSCEJB.66.35","DOIUrl":null,"url":null,"abstract":"(RAP) for an distributed hydrological model in (137.5 ), The RAP data were observed spatially, 2.5 km (cid:2) 2.5 km resolution. The result shows that the accuracy of river water discarge was improved by 30-60% compared with the ground-based precipitation data, those were observed at around 17 km interval. Based on a classification of the rainfall characteristics, we clarify that not only a decrease","PeriodicalId":11343,"journal":{"name":"Doboku Gakkai Ronbunshuu B","volume":"139 1","pages":"35-46"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RIVER RUNOFF ANALYSIS USING RADAR-AMeDAS COMPOSITE PRECIPITATION IN A MIDDLE-SCALE RIVER BASIN AND ITS VERIFICATION BASED ON THE CLASSIFICATION OF RAINFALL CHARACTERISTICS\",\"authors\":\"M. Ishizuka, H. Yoshida, T. Miyazaki\",\"doi\":\"10.2208/JSCEJB.66.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(RAP) for an distributed hydrological model in (137.5 ), The RAP data were observed spatially, 2.5 km (cid:2) 2.5 km resolution. The result shows that the accuracy of river water discarge was improved by 30-60% compared with the ground-based precipitation data, those were observed at around 17 km interval. Based on a classification of the rainfall characteristics, we clarify that not only a decrease\",\"PeriodicalId\":11343,\"journal\":{\"name\":\"Doboku Gakkai Ronbunshuu B\",\"volume\":\"139 1\",\"pages\":\"35-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doboku Gakkai Ronbunshuu B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2208/JSCEJB.66.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doboku Gakkai Ronbunshuu B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2208/JSCEJB.66.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

(RAP)为(137.5)中的分布式水文模型,RAP数据在空间上观测,分辨率为2.5 km (cid:2) 2.5 km。结果表明,与地面降水资料相比,河流弃水的精度提高了30 ~ 60%,而地面降水资料的观测间隔约为17 km。在对降雨特征进行分类的基础上,阐明了不仅有减少
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RIVER RUNOFF ANALYSIS USING RADAR-AMeDAS COMPOSITE PRECIPITATION IN A MIDDLE-SCALE RIVER BASIN AND ITS VERIFICATION BASED ON THE CLASSIFICATION OF RAINFALL CHARACTERISTICS
(RAP) for an distributed hydrological model in (137.5 ), The RAP data were observed spatially, 2.5 km (cid:2) 2.5 km resolution. The result shows that the accuracy of river water discarge was improved by 30-60% compared with the ground-based precipitation data, those were observed at around 17 km interval. Based on a classification of the rainfall characteristics, we clarify that not only a decrease
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NUMERICAL ANALYSIS OF ALLUVIAL FAN FORMATION ON A PERMEABLE PLAIN ONE-DIMENSIONAL NUMERICAL MODEL FOR CYCLIC SEAWARD BAR MIGRATIONS MECHANISM OF CPOM DEPOSITION AND LITTER PATCH TYPES IN MOUNTAIN STREAMS COEFFICIENTS OF FLOAT IN ACTUAL RIVERS UNDER FLOODING CONDITIONS SEMI-IMPLICIT ALGORITHM OF PARTICLE METHOD ACCELERATED BY GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1