基于L(p,q)估计量的区间回归模型

M. Namdari, Seung-Hoe Choi
{"title":"基于L(p,q)估计量的区间回归模型","authors":"M. Namdari, Seung-Hoe Choi","doi":"10.14355/IJCSA.2014.0301.12","DOIUrl":null,"url":null,"abstract":"In this paper we introduce an interval regression model, having interval coefficients and crisp input data, and propose a L(p,q)-estimator for the interval coefficients. The L(p,q)-estimator uses one Lp-norm to estimate the left end point of the interval coefficients and independently another Lq-norm for the width of the intervals. An example is presented showing how the results of the regression model vary as we change p and q which implies we need to find the “best\" p and q. An error measure is defined and we use response surface methodology to search for the optimal values for p and q to minimize this error.","PeriodicalId":39465,"journal":{"name":"International Journal of Computer Science and Applications","volume":"10 1","pages":"50"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interval Regression Model Using L(p,q) -Estimator\",\"authors\":\"M. Namdari, Seung-Hoe Choi\",\"doi\":\"10.14355/IJCSA.2014.0301.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce an interval regression model, having interval coefficients and crisp input data, and propose a L(p,q)-estimator for the interval coefficients. The L(p,q)-estimator uses one Lp-norm to estimate the left end point of the interval coefficients and independently another Lq-norm for the width of the intervals. An example is presented showing how the results of the regression model vary as we change p and q which implies we need to find the “best\\\" p and q. An error measure is defined and we use response surface methodology to search for the optimal values for p and q to minimize this error.\",\"PeriodicalId\":39465,\"journal\":{\"name\":\"International Journal of Computer Science and Applications\",\"volume\":\"10 1\",\"pages\":\"50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14355/IJCSA.2014.0301.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14355/IJCSA.2014.0301.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一种具有区间系数和清晰输入数据的区间回归模型,并给出了区间系数的L(p,q)估计量。L(p,q)-估计量使用一个lq -范数来估计区间系数的左端点,并独立地使用另一个lq -范数来估计区间的宽度。给出了一个例子,显示了随着p和q的变化,回归模型的结果是如何变化的,这意味着我们需要找到“最佳”p和q。定义了一个误差测量,我们使用响应面方法来搜索p和q的最优值,以最小化该误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interval Regression Model Using L(p,q) -Estimator
In this paper we introduce an interval regression model, having interval coefficients and crisp input data, and propose a L(p,q)-estimator for the interval coefficients. The L(p,q)-estimator uses one Lp-norm to estimate the left end point of the interval coefficients and independently another Lq-norm for the width of the intervals. An example is presented showing how the results of the regression model vary as we change p and q which implies we need to find the “best" p and q. An error measure is defined and we use response surface methodology to search for the optimal values for p and q to minimize this error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Science and Applications
International Journal of Computer Science and Applications Computer Science-Computer Science Applications
自引率
0.00%
发文量
0
期刊介绍: IJCSA is an international forum for scientists and engineers involved in computer science and its applications to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the IJCSA are selected through rigorous peer review to ensure originality, timeliness, relevance, and readability.
期刊最新文献
Prediction of Mental Health Instability using Machine Learning and Deep Learning Algorithms Prediction of Personality Traits and Suitable Job through an Intelligent Interview Agent using Machine Learning MultiScale Object Detection in Remote Sensing Images using Deep Learning People Counting and Tracking System in Real-Time Using Deep Learning Techniques Covid-19 Chest X-ray Images: Lung Segmentation and Diagnosis using Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1