冷弯c形通道截面优化技术的应用

Heba F. El-Lafy, El-Badr O. Elgendi, A. Morsy
{"title":"冷弯c形通道截面优化技术的应用","authors":"Heba F. El-Lafy, El-Badr O. Elgendi, A. Morsy","doi":"10.2478/ijame-2022-0050","DOIUrl":null,"url":null,"abstract":"Abstract There are no standard dimensions or shapes for cold-formed sections (CFS), making it difficult for a designer to choose the optimal section dimensions in order to obtain the most cost-effective section. A great number of researchers have utilized various optimization strategies in order to obtain the optimal section dimensions. Multi-objective optimization of CFS C-channel beams using a non-dominated sorting genetic algorithm II was performed using a Microsoft Excel macro to determine the optimal cross-section dimensions. The beam was optimized according to its flexural capacity and cross-sectional area. The flexural capacity was computed utilizing the effective width method (EWM) in accordance with the Egyptian code. The constraints were selected so that the optimal dimensions derived from optimization would be production and construction-friendly. A Pareto optimal solution was obtained for 91 sections. The Pareto curve demonstrates that the solution possesses both diversity and convergence in the objective space. The solution demonstrates that there is no optimal solution between 1 and 1.5 millimeters in thickness. The solutions were validated by conducting a comprehensive parametric analysis of the change in section dimensions and the corresponding local buckling capacity. In addition, performing a single-objective optimization based on section flexural capacity at various thicknesses The parametric analysis and single optimization indicate that increasing the dimensions of the elements, excluding the lip depth, will increase the section’s carrying capacity. However, this increase will depend on the coil’s wall thickness. The increase is more rapid in thicker coils than in thinner ones.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"11 1","pages":"52 - 65"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying Optimization Techniques on Cold-Formed C-Channel Section Under Bending\",\"authors\":\"Heba F. El-Lafy, El-Badr O. Elgendi, A. Morsy\",\"doi\":\"10.2478/ijame-2022-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There are no standard dimensions or shapes for cold-formed sections (CFS), making it difficult for a designer to choose the optimal section dimensions in order to obtain the most cost-effective section. A great number of researchers have utilized various optimization strategies in order to obtain the optimal section dimensions. Multi-objective optimization of CFS C-channel beams using a non-dominated sorting genetic algorithm II was performed using a Microsoft Excel macro to determine the optimal cross-section dimensions. The beam was optimized according to its flexural capacity and cross-sectional area. The flexural capacity was computed utilizing the effective width method (EWM) in accordance with the Egyptian code. The constraints were selected so that the optimal dimensions derived from optimization would be production and construction-friendly. A Pareto optimal solution was obtained for 91 sections. The Pareto curve demonstrates that the solution possesses both diversity and convergence in the objective space. The solution demonstrates that there is no optimal solution between 1 and 1.5 millimeters in thickness. The solutions were validated by conducting a comprehensive parametric analysis of the change in section dimensions and the corresponding local buckling capacity. In addition, performing a single-objective optimization based on section flexural capacity at various thicknesses The parametric analysis and single optimization indicate that increasing the dimensions of the elements, excluding the lip depth, will increase the section’s carrying capacity. However, this increase will depend on the coil’s wall thickness. The increase is more rapid in thicker coils than in thinner ones.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"11 1\",\"pages\":\"52 - 65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijame-2022-0050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijame-2022-0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要冷弯型钢没有标准的尺寸和形状,为设计人员选择最优的截面尺寸以获得最经济的截面带来了困难。为了获得最优截面尺寸,许多研究者采用了各种优化策略。采用非支配排序遗传算法II对CFS c通道梁进行多目标优化,利用Microsoft Excel宏确定最优截面尺寸。根据梁的抗弯能力和横截面积对梁进行了优化。根据埃及规范,采用有效宽度法(EWM)计算抗弯承载力。对约束条件进行选择,使优化得到的最优尺寸符合生产和施工要求。得到了91个断面的Pareto最优解。Pareto曲线证明了该解在目标空间中具有多样性和收敛性。该解决方案表明,在厚度1和1.5毫米之间没有最佳解决方案。通过对截面尺寸变化和相应的局部屈曲能力进行综合参数分析,验证了上述方案的有效性。此外,基于不同厚度下截面抗弯承载力的单目标优化。参数分析和单目标优化表明,增加除唇部深度外的构件尺寸将增加截面的承载能力。然而,这种增加将取决于线圈的壁厚。较厚的线圈比较薄的线圈增加得更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying Optimization Techniques on Cold-Formed C-Channel Section Under Bending
Abstract There are no standard dimensions or shapes for cold-formed sections (CFS), making it difficult for a designer to choose the optimal section dimensions in order to obtain the most cost-effective section. A great number of researchers have utilized various optimization strategies in order to obtain the optimal section dimensions. Multi-objective optimization of CFS C-channel beams using a non-dominated sorting genetic algorithm II was performed using a Microsoft Excel macro to determine the optimal cross-section dimensions. The beam was optimized according to its flexural capacity and cross-sectional area. The flexural capacity was computed utilizing the effective width method (EWM) in accordance with the Egyptian code. The constraints were selected so that the optimal dimensions derived from optimization would be production and construction-friendly. A Pareto optimal solution was obtained for 91 sections. The Pareto curve demonstrates that the solution possesses both diversity and convergence in the objective space. The solution demonstrates that there is no optimal solution between 1 and 1.5 millimeters in thickness. The solutions were validated by conducting a comprehensive parametric analysis of the change in section dimensions and the corresponding local buckling capacity. In addition, performing a single-objective optimization based on section flexural capacity at various thicknesses The parametric analysis and single optimization indicate that increasing the dimensions of the elements, excluding the lip depth, will increase the section’s carrying capacity. However, this increase will depend on the coil’s wall thickness. The increase is more rapid in thicker coils than in thinner ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
期刊最新文献
The detrimental effect of thermal exposure and thermophoresis on MHD flow with combined mass and heat transmission employing permeability Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder chattering analysis of an electro-hydraulic backstepping velocity controller Effect of Angular Speed Variations on the Nonlinear Vibrations of a Rotational Spring-Mass System Entropy Generation Analysis OF Mhd Micropolar – Nanofluid Flow Over A Moved And Permeable Vertical Plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1