具有强抗炎作用的类维甲酸-多胺偶联物对大鼠的毒性和致畸性研究。

Theodoros Petridis, D. Giannakopoulou, Vassiliki Stamatopoulou, K. Grafanaki, C. Kostopoulos, H. Papadaki, C. Malavaki, Nikos Karamanos, Stathianna Douroumi, D. Papachristou, George E. Magoulas, D. Papaioannou, D. Drainas
{"title":"具有强抗炎作用的类维甲酸-多胺偶联物对大鼠的毒性和致畸性研究。","authors":"Theodoros Petridis, D. Giannakopoulou, Vassiliki Stamatopoulou, K. Grafanaki, C. Kostopoulos, H. Papadaki, C. Malavaki, Nikos Karamanos, Stathianna Douroumi, D. Papachristou, George E. Magoulas, D. Papaioannou, D. Drainas","doi":"10.1002/bdrb.21170","DOIUrl":null,"url":null,"abstract":"Previous studies have shown that N(1),N(12)-bis(all-trans-retinoyl)spermine (RASP), a retinoid analog, inhibits RNase P activity and angiogenesis in the chicken embryo chorioallantoic membrane, demonstrates anti-tumor activity on prostate cancer cells, and acts as anti-inflammatory agent, being more effective and less toxic than all-trans retinoic acid. In an attempt to further characterize the biological profile of RASP, we tested its effects on organ toxicity and teratogenicity by daily oral gavage of RASP at a level of 50 mg/Kg of body weight in two generations of rats. We found that this compound does not induce changes to the body growth, the appearance of physical features, and the animal's reflexes. Additionally, no substantial histopathological lesions were found in brain, heart, lung, thymus, liver, thyroid gland, adrenal gland, pituitary gland, kidneys, spleen, skin, femora, prostate, testis, epididymis, vagina, uterus, and ovaries of RASP-treated animals. These results suggest RASP, as a promising lead compound for the treatment of several dermatological disorders and certain cancer types, has apparently minimal toxic side-effects as revealed in this two-generation reproduction study in rats.","PeriodicalId":9120,"journal":{"name":"Birth defects research. Part B, Developmental and reproductive toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigation on Toxicity and Teratogenicity in Rats of a Retinoid-Polyamine Conjugate with Potent Anti-Inflammatory Properties.\",\"authors\":\"Theodoros Petridis, D. Giannakopoulou, Vassiliki Stamatopoulou, K. Grafanaki, C. Kostopoulos, H. Papadaki, C. Malavaki, Nikos Karamanos, Stathianna Douroumi, D. Papachristou, George E. Magoulas, D. Papaioannou, D. Drainas\",\"doi\":\"10.1002/bdrb.21170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies have shown that N(1),N(12)-bis(all-trans-retinoyl)spermine (RASP), a retinoid analog, inhibits RNase P activity and angiogenesis in the chicken embryo chorioallantoic membrane, demonstrates anti-tumor activity on prostate cancer cells, and acts as anti-inflammatory agent, being more effective and less toxic than all-trans retinoic acid. In an attempt to further characterize the biological profile of RASP, we tested its effects on organ toxicity and teratogenicity by daily oral gavage of RASP at a level of 50 mg/Kg of body weight in two generations of rats. We found that this compound does not induce changes to the body growth, the appearance of physical features, and the animal's reflexes. Additionally, no substantial histopathological lesions were found in brain, heart, lung, thymus, liver, thyroid gland, adrenal gland, pituitary gland, kidneys, spleen, skin, femora, prostate, testis, epididymis, vagina, uterus, and ovaries of RASP-treated animals. These results suggest RASP, as a promising lead compound for the treatment of several dermatological disorders and certain cancer types, has apparently minimal toxic side-effects as revealed in this two-generation reproduction study in rats.\",\"PeriodicalId\":9120,\"journal\":{\"name\":\"Birth defects research. Part B, Developmental and reproductive toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Birth defects research. Part B, Developmental and reproductive toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/bdrb.21170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth defects research. Part B, Developmental and reproductive toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/bdrb.21170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2

摘要

已有研究表明,类维甲酸类似物N(1),N(12)-二(全反式维甲酸)精胺(RASP)抑制鸡胚绒毛膜尿囊膜RNase P活性和血管生成,对前列腺癌细胞具有抗肿瘤活性,并具有抗炎作用,比全反式维甲酸更有效,毒性更小。为了进一步表征RASP的生物学特性,我们在两代大鼠中每天口服50 mg/Kg体重水平的RASP,测试了其对器官毒性和致畸性的影响。我们发现,这种化合物不会引起身体生长、身体特征和动物反应的变化。此外,经rasps处理的动物的脑、心、肺、胸腺、肝脏、甲状腺、肾上腺、垂体、肾脏、脾脏、皮肤、股骨、前列腺、睾丸、附睾、阴道、子宫和卵巢均未见明显的组织病理学病变。这些结果表明,RASP作为治疗几种皮肤病和某些癌症类型的有希望的先导化合物,在大鼠的两代繁殖研究中显示,它的毒副作用明显很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on Toxicity and Teratogenicity in Rats of a Retinoid-Polyamine Conjugate with Potent Anti-Inflammatory Properties.
Previous studies have shown that N(1),N(12)-bis(all-trans-retinoyl)spermine (RASP), a retinoid analog, inhibits RNase P activity and angiogenesis in the chicken embryo chorioallantoic membrane, demonstrates anti-tumor activity on prostate cancer cells, and acts as anti-inflammatory agent, being more effective and less toxic than all-trans retinoic acid. In an attempt to further characterize the biological profile of RASP, we tested its effects on organ toxicity and teratogenicity by daily oral gavage of RASP at a level of 50 mg/Kg of body weight in two generations of rats. We found that this compound does not induce changes to the body growth, the appearance of physical features, and the animal's reflexes. Additionally, no substantial histopathological lesions were found in brain, heart, lung, thymus, liver, thyroid gland, adrenal gland, pituitary gland, kidneys, spleen, skin, femora, prostate, testis, epididymis, vagina, uterus, and ovaries of RASP-treated animals. These results suggest RASP, as a promising lead compound for the treatment of several dermatological disorders and certain cancer types, has apparently minimal toxic side-effects as revealed in this two-generation reproduction study in rats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.65
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The purpose of this journal is to publish original contributions describing the toxicity of chemicals to developing organisms and the process of reproduction. The scope of the journal will inlcude: • toxicity of new chemical entities and biotechnology derived products to developing organismal systems; • toxicity of these and other xenobiotic agents to reproductive function; • multi-generation studies; • endocrine-mediated toxicity, particularly for endpoints that are relevant to development and reproduction; • novel protocols for evaluating developmental and reproductive toxicity; Part B: Developmental and Reproductive Toxicology , formerly published as Teratogenesis, Carcinogenesis and Mutagenesis
期刊最新文献
Role of endocrine disruptors in male infertility and impact of COVID-19 on male reproduction Adverse Outcome Pathways in reproductive and developmental toxicology Use of computational toxicology tools to predict in vivo endpoints Mitochondrial dysfunction in reproductive and developmental toxicity Caenorhabditis elegans as a model to assess reproductive and developmental toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1