评估简单规则路径查询的二分类

W. Martens, T. Trautner
{"title":"评估简单规则路径查询的二分类","authors":"W. Martens, T. Trautner","doi":"10.1145/3331446","DOIUrl":null,"url":null,"abstract":"Regular path queries (RPQs) are a central component of graph databases. We investigate decision and enumeration problems concerning the evaluation of RPQs under several semantics that have recently been considered: arbitrary paths, shortest paths, paths without node repetitions (simple paths), and paths without edge repetitions (trails). Whereas arbitrary and shortest paths can be dealt with efficiently, simple paths and trails become computationally difficult already for very small RPQs. We study RPQ evaluation for simple paths and trails from a parameterized complexity perspective and define a class of simple transitive expressions that is prominent in practice and for which we can prove dichotomies for the evaluation problem. We observe that, even though simple path and trail semantics are intractable for RPQs in general, they are feasible for the vast majority of RPQs that are used in practice. At the heart of this study is a result of independent interest: the two disjoint paths problem in directed graphs is W[1]-hard if parameterized by the length of one of the two paths.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"11 1","pages":"1 - 46"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Dichotomies for Evaluating Simple Regular Path Queries\",\"authors\":\"W. Martens, T. Trautner\",\"doi\":\"10.1145/3331446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regular path queries (RPQs) are a central component of graph databases. We investigate decision and enumeration problems concerning the evaluation of RPQs under several semantics that have recently been considered: arbitrary paths, shortest paths, paths without node repetitions (simple paths), and paths without edge repetitions (trails). Whereas arbitrary and shortest paths can be dealt with efficiently, simple paths and trails become computationally difficult already for very small RPQs. We study RPQ evaluation for simple paths and trails from a parameterized complexity perspective and define a class of simple transitive expressions that is prominent in practice and for which we can prove dichotomies for the evaluation problem. We observe that, even though simple path and trail semantics are intractable for RPQs in general, they are feasible for the vast majority of RPQs that are used in practice. At the heart of this study is a result of independent interest: the two disjoint paths problem in directed graphs is W[1]-hard if parameterized by the length of one of the two paths.\",\"PeriodicalId\":6983,\"journal\":{\"name\":\"ACM Transactions on Database Systems (TODS)\",\"volume\":\"11 1\",\"pages\":\"1 - 46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems (TODS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

正则路径查询(rpq)是图数据库的核心组成部分。我们研究了最近考虑的几种语义下关于rpq评估的决策和枚举问题:任意路径,最短路径,无节点重复的路径(简单路径)和无边缘重复的路径(路径)。尽管任意和最短路径可以有效地处理,但对于非常小的rpq来说,简单的路径和轨迹在计算上已经很困难了。我们从参数化复杂性的角度研究了简单路径和轨迹的RPQ求值问题,并定义了一类在实践中很突出的简单传递表达式,我们可以证明二分类的求值问题。我们观察到,尽管简单的路径和路径语义通常对rpq来说是难以处理的,但它们对于实践中使用的绝大多数rpq来说是可行的。本研究的核心是一个独立兴趣的结果:有向图中的两条不相交路径问题是W[1],如果用两条路径之一的长度参数化,则很难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dichotomies for Evaluating Simple Regular Path Queries
Regular path queries (RPQs) are a central component of graph databases. We investigate decision and enumeration problems concerning the evaluation of RPQs under several semantics that have recently been considered: arbitrary paths, shortest paths, paths without node repetitions (simple paths), and paths without edge repetitions (trails). Whereas arbitrary and shortest paths can be dealt with efficiently, simple paths and trails become computationally difficult already for very small RPQs. We study RPQ evaluation for simple paths and trails from a parameterized complexity perspective and define a class of simple transitive expressions that is prominent in practice and for which we can prove dichotomies for the evaluation problem. We observe that, even though simple path and trail semantics are intractable for RPQs in general, they are feasible for the vast majority of RPQs that are used in practice. At the heart of this study is a result of independent interest: the two disjoint paths problem in directed graphs is W[1]-hard if parameterized by the length of one of the two paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Finding Rank Regret Representatives Answering (Unions of) Conjunctive Queries using Random Access and Random-Order Enumeration Persistent Summaries Influence Maximization Revisited: Efficient Sampling with Bound Tightened The Space-Efficient Core of Vadalog
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1