非负分解参数的自适应编码及其在知情源分离中的应用

Max Bläser, Christian Rohlfing, Yingbo Gao, M. Wien
{"title":"非负分解参数的自适应编码及其在知情源分离中的应用","authors":"Max Bläser, Christian Rohlfing, Yingbo Gao, M. Wien","doi":"10.1109/ICASSP.2018.8462584","DOIUrl":null,"url":null,"abstract":"Informed source separation (ISS) uses source separation for extracting audio objects out of their downmix given some pre-computed parameters. In recent years, non-negative tensor factorization (NTF) has proven to be a good choice for compressing audio objects at an encoding stage. At the decoding stage, these parameters are used to separate the downmix with Wiener-filtering. The quantized NTF parameters have to be encoded to a bit stream prior to transmission. In this paper, we propose to use context-based adaptive binary arithmetic coding (CABAC) for this task. CABAC is widely used in the video coding community and exploits local signal statistics. We adapt CABAC to the task of NTF-based ISS and show that our contribution outperforms reference coding methods.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"48 1","pages":"751-755"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Coding of Non-Negative Factorization Parameters with Application to Informed Source Separation\",\"authors\":\"Max Bläser, Christian Rohlfing, Yingbo Gao, M. Wien\",\"doi\":\"10.1109/ICASSP.2018.8462584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Informed source separation (ISS) uses source separation for extracting audio objects out of their downmix given some pre-computed parameters. In recent years, non-negative tensor factorization (NTF) has proven to be a good choice for compressing audio objects at an encoding stage. At the decoding stage, these parameters are used to separate the downmix with Wiener-filtering. The quantized NTF parameters have to be encoded to a bit stream prior to transmission. In this paper, we propose to use context-based adaptive binary arithmetic coding (CABAC) for this task. CABAC is widely used in the video coding community and exploits local signal statistics. We adapt CABAC to the task of NTF-based ISS and show that our contribution outperforms reference coding methods.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"48 1\",\"pages\":\"751-755\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

信息源分离(ISS)使用源分离从下混音中提取音频对象,给出一些预先计算的参数。近年来,非负张量分解(NTF)被证明是在编码阶段压缩音频对象的一个很好的选择。在解码阶段,使用这些参数与维纳滤波分离下混音。在传输之前,量化的NTF参数必须被编码成比特流。在本文中,我们建议使用基于上下文的自适应二进制算术编码(CABAC)来完成这项任务。CABAC在视频编码界得到了广泛的应用,它利用了局部信号的统计特性。我们将CABAC用于基于ntf的ISS任务,并表明我们的贡献优于参考编码方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Coding of Non-Negative Factorization Parameters with Application to Informed Source Separation
Informed source separation (ISS) uses source separation for extracting audio objects out of their downmix given some pre-computed parameters. In recent years, non-negative tensor factorization (NTF) has proven to be a good choice for compressing audio objects at an encoding stage. At the decoding stage, these parameters are used to separate the downmix with Wiener-filtering. The quantized NTF parameters have to be encoded to a bit stream prior to transmission. In this paper, we propose to use context-based adaptive binary arithmetic coding (CABAC) for this task. CABAC is widely used in the video coding community and exploits local signal statistics. We adapt CABAC to the task of NTF-based ISS and show that our contribution outperforms reference coding methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1