重力水涡电厂转轮的计算与实验研究

Rabin Dhakal, T. Bajracharya, S. Shakya, B. Kumal, K. Khanal, S. Williamson, S. Gautam, D. P. Ghale
{"title":"重力水涡电厂转轮的计算与实验研究","authors":"Rabin Dhakal, T. Bajracharya, S. Shakya, B. Kumal, K. Khanal, S. Williamson, S. Gautam, D. P. Ghale","doi":"10.1109/ICRERA.2017.8191087","DOIUrl":null,"url":null,"abstract":"The gravitational water vortex power plant (GWVPP) is a new type of low head turbine system in which a channel and basin structure is used to form a vortex, where the rotational energy from the water can be extracted through a runner. This study is focused on the optimization of the runner to improve the efficiency of the GWVPP. Computational fluid dynamics (CFD) analysis is carried out on three different runner designs with straight, twisted and curved blade profiles. ANSYS CFX was used to analyze the fluid flow through the channel, basin, turbine hub and blade, and results were used to evaluate the efficiency of each of the runner designs. The CFD analysis showed curved blade profile to be the most efficient profile, with a peak efficiency of 82%, compared to 46% for the straight blade runner and 63% for the twisted blade version. An experimental test of the turbine system was carried out to validate the runner analysis, in a scale version of the GWVPP. The testing showed that the runner behaved as predicted from the CFD analysis, and had a peak efficiency point of 71% at 0.5m head.","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"108 1","pages":"365-373"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Computational and experimental investigation of runner for gravitational water vortex power plant\",\"authors\":\"Rabin Dhakal, T. Bajracharya, S. Shakya, B. Kumal, K. Khanal, S. Williamson, S. Gautam, D. P. Ghale\",\"doi\":\"10.1109/ICRERA.2017.8191087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gravitational water vortex power plant (GWVPP) is a new type of low head turbine system in which a channel and basin structure is used to form a vortex, where the rotational energy from the water can be extracted through a runner. This study is focused on the optimization of the runner to improve the efficiency of the GWVPP. Computational fluid dynamics (CFD) analysis is carried out on three different runner designs with straight, twisted and curved blade profiles. ANSYS CFX was used to analyze the fluid flow through the channel, basin, turbine hub and blade, and results were used to evaluate the efficiency of each of the runner designs. The CFD analysis showed curved blade profile to be the most efficient profile, with a peak efficiency of 82%, compared to 46% for the straight blade runner and 63% for the twisted blade version. An experimental test of the turbine system was carried out to validate the runner analysis, in a scale version of the GWVPP. The testing showed that the runner behaved as predicted from the CFD analysis, and had a peak efficiency point of 71% at 0.5m head.\",\"PeriodicalId\":6535,\"journal\":{\"name\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"volume\":\"108 1\",\"pages\":\"365-373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRERA.2017.8191087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

重力水涡电站是一种新型的低水头水轮机系统,它采用沟槽结构形成涡流,通过转轮提取水能。本研究的重点是优化转轮,以提高GWVPP的效率。计算流体力学(CFD)分析了三种不同的流道设计,包括直型、扭型和弯型。利用ANSYS CFX对流道、槽、涡轮轮毂和叶片的流体流动进行了分析,并利用分析结果对各流道设计的效率进行了评价。CFD分析表明,弯曲叶片是效率最高的叶片,峰值效率为82%,而直叶片流道的峰值效率为46%,扭曲叶片的峰值效率为63%。在GWVPP的规模版本中,对涡轮系统进行了实验测试以验证转轮分析。试验结果表明,该流道性能符合CFD分析预测,在0.5m水头处效率峰值为71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational and experimental investigation of runner for gravitational water vortex power plant
The gravitational water vortex power plant (GWVPP) is a new type of low head turbine system in which a channel and basin structure is used to form a vortex, where the rotational energy from the water can be extracted through a runner. This study is focused on the optimization of the runner to improve the efficiency of the GWVPP. Computational fluid dynamics (CFD) analysis is carried out on three different runner designs with straight, twisted and curved blade profiles. ANSYS CFX was used to analyze the fluid flow through the channel, basin, turbine hub and blade, and results were used to evaluate the efficiency of each of the runner designs. The CFD analysis showed curved blade profile to be the most efficient profile, with a peak efficiency of 82%, compared to 46% for the straight blade runner and 63% for the twisted blade version. An experimental test of the turbine system was carried out to validate the runner analysis, in a scale version of the GWVPP. The testing showed that the runner behaved as predicted from the CFD analysis, and had a peak efficiency point of 71% at 0.5m head.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of AC link topologies in non-isolated DC/DC triple active bridge converter for current stress minimization Modelling and attitude control of a shrouded floating offshore wind turbine with hinged structure in extreme conditions Direct load control of air conditioners in Qatar: An empirical study Stochastic unit commitment considering Markov process of wind power forecast Primary and secondary voltage/frequency controller design for energy storage devices using consensus theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1