{"title":"黏性耗散和热辐射对变黏度平行板间CuO−Al2O3/水混合纳米流体不可压缩压缩流动的影响","authors":"O.A. Famakinwa, O.K. Koriko, K.S. Adegbie","doi":"10.1016/j.jcmds.2022.100062","DOIUrl":null,"url":null,"abstract":"<div><p>In view of the dominant properties of hybrid nanofluid such as high thermal and electrical conductivity in addition to enhanced heat transfer rate, efforts had been strengthened by many researchers to upgrade the thermal behavior of the base fluid through different approaches. In this study, viscous dissipation and thermal radiation effects on unsteady incompressible squeezing flow conveying <span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi><mo>−</mo><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>/</mo></mrow></math></span>water hybrid nanoparticles between two aligned surfaces with variable viscosity is examined. The fluid model is transformed to ordinary differential equations by incorporating appropriate similarity transformation. The numerical simulation is carried out in MATLAB software package via shooting procedure coupled with <span><math><mrow><mn>4</mn><mi>t</mi><mi>h</mi></mrow></math></span> order Runge–Kutta integration scheme. The limiting case is found to be in accord relative to the preceding reports. The outcomes of the scrutiny are unveiled in tables and graphs. It was revealed that the velocity and temperature augment with increasing viscosity variation and squeezing fluid parameters. Meanwhile, increasing viscous dissipation and thermal radiation parameters decrease the temperature distribution with no significant change in the fluid velocity.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"5 ","pages":"Article 100062"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000220/pdfft?md5=9424e5a9e389ee13b5970c55ab05f778&pid=1-s2.0-S2772415822000220-main.pdf","citationCount":"11","resultStr":"{\"title\":\"Effects of viscous dissipation and thermal radiation on time dependent incompressible squeezing flow of CuO−Al2O3/water hybrid nanofluid between two parallel plates with variable viscosity\",\"authors\":\"O.A. Famakinwa, O.K. Koriko, K.S. Adegbie\",\"doi\":\"10.1016/j.jcmds.2022.100062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In view of the dominant properties of hybrid nanofluid such as high thermal and electrical conductivity in addition to enhanced heat transfer rate, efforts had been strengthened by many researchers to upgrade the thermal behavior of the base fluid through different approaches. In this study, viscous dissipation and thermal radiation effects on unsteady incompressible squeezing flow conveying <span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi><mo>−</mo><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>/</mo></mrow></math></span>water hybrid nanoparticles between two aligned surfaces with variable viscosity is examined. The fluid model is transformed to ordinary differential equations by incorporating appropriate similarity transformation. The numerical simulation is carried out in MATLAB software package via shooting procedure coupled with <span><math><mrow><mn>4</mn><mi>t</mi><mi>h</mi></mrow></math></span> order Runge–Kutta integration scheme. The limiting case is found to be in accord relative to the preceding reports. The outcomes of the scrutiny are unveiled in tables and graphs. It was revealed that the velocity and temperature augment with increasing viscosity variation and squeezing fluid parameters. Meanwhile, increasing viscous dissipation and thermal radiation parameters decrease the temperature distribution with no significant change in the fluid velocity.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"5 \",\"pages\":\"Article 100062\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000220/pdfft?md5=9424e5a9e389ee13b5970c55ab05f778&pid=1-s2.0-S2772415822000220-main.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of viscous dissipation and thermal radiation on time dependent incompressible squeezing flow of CuO−Al2O3/water hybrid nanofluid between two parallel plates with variable viscosity
In view of the dominant properties of hybrid nanofluid such as high thermal and electrical conductivity in addition to enhanced heat transfer rate, efforts had been strengthened by many researchers to upgrade the thermal behavior of the base fluid through different approaches. In this study, viscous dissipation and thermal radiation effects on unsteady incompressible squeezing flow conveying water hybrid nanoparticles between two aligned surfaces with variable viscosity is examined. The fluid model is transformed to ordinary differential equations by incorporating appropriate similarity transformation. The numerical simulation is carried out in MATLAB software package via shooting procedure coupled with order Runge–Kutta integration scheme. The limiting case is found to be in accord relative to the preceding reports. The outcomes of the scrutiny are unveiled in tables and graphs. It was revealed that the velocity and temperature augment with increasing viscosity variation and squeezing fluid parameters. Meanwhile, increasing viscous dissipation and thermal radiation parameters decrease the temperature distribution with no significant change in the fluid velocity.