{"title":"具有合作与竞争效应的电子商务平台生态系统共生演化——基于扩展人口密度Logistic模型的仿真","authors":"Shan Du","doi":"10.1155/2023/2472618","DOIUrl":null,"url":null,"abstract":"With the development of the Internet, traditional platforms have been challenged by competition from participants on the platform. However, it is unclear how these two types of population, which are in competition but also mutually dependent, can co-exist in the new platform ecosystem. This paper sheds light on that key phenomenon by extending the population density logistic model of the e-commerce platform ecosystem between participants and platforms based on the symbiosis theory. By solving the logistic equation, we acquire the evolutionary trajectory and final size of populations under different symbiotic patterns. The results reveal that the cooperative and competitive effect determines the equilibrium outcome of the symbiosis evolution of e-commerce platform ecosystem. In the asymmetric symbiosis mode, only one population is influenced by positive synergy that increases population density and promote evolution. The contribution coefficient of subordinate to the dominant is greater than the feedback coefficient from the dominant; the trends of output value are inconsistent. The symmetric symbiosis mode is the optimal model for participants and platforms. The effect “\n \n 1\n +\n 1\n >\n 2\n \n ” can only be achieved under the symmetric symbiosis mode, and the growth of the participants and the platforms is more stable and sufficient than that in other modes. The findings will provide additional perspectives to promote the sustainable development of e-commerce platform ecosystem considering the cooperative and competitive effect.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symbiosis Evolution of E-commerce Platform Ecosystem with Cooperative and Competitive Effect: An Extended Population Density Logistic Model-Based Simulation\",\"authors\":\"Shan Du\",\"doi\":\"10.1155/2023/2472618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of the Internet, traditional platforms have been challenged by competition from participants on the platform. However, it is unclear how these two types of population, which are in competition but also mutually dependent, can co-exist in the new platform ecosystem. This paper sheds light on that key phenomenon by extending the population density logistic model of the e-commerce platform ecosystem between participants and platforms based on the symbiosis theory. By solving the logistic equation, we acquire the evolutionary trajectory and final size of populations under different symbiotic patterns. The results reveal that the cooperative and competitive effect determines the equilibrium outcome of the symbiosis evolution of e-commerce platform ecosystem. In the asymmetric symbiosis mode, only one population is influenced by positive synergy that increases population density and promote evolution. The contribution coefficient of subordinate to the dominant is greater than the feedback coefficient from the dominant; the trends of output value are inconsistent. The symmetric symbiosis mode is the optimal model for participants and platforms. The effect “\\n \\n 1\\n +\\n 1\\n >\\n 2\\n \\n ” can only be achieved under the symmetric symbiosis mode, and the growth of the participants and the platforms is more stable and sufficient than that in other modes. The findings will provide additional perspectives to promote the sustainable development of e-commerce platform ecosystem considering the cooperative and competitive effect.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2472618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2472618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Symbiosis Evolution of E-commerce Platform Ecosystem with Cooperative and Competitive Effect: An Extended Population Density Logistic Model-Based Simulation
With the development of the Internet, traditional platforms have been challenged by competition from participants on the platform. However, it is unclear how these two types of population, which are in competition but also mutually dependent, can co-exist in the new platform ecosystem. This paper sheds light on that key phenomenon by extending the population density logistic model of the e-commerce platform ecosystem between participants and platforms based on the symbiosis theory. By solving the logistic equation, we acquire the evolutionary trajectory and final size of populations under different symbiotic patterns. The results reveal that the cooperative and competitive effect determines the equilibrium outcome of the symbiosis evolution of e-commerce platform ecosystem. In the asymmetric symbiosis mode, only one population is influenced by positive synergy that increases population density and promote evolution. The contribution coefficient of subordinate to the dominant is greater than the feedback coefficient from the dominant; the trends of output value are inconsistent. The symmetric symbiosis mode is the optimal model for participants and platforms. The effect “
1
+
1
>
2
” can only be achieved under the symmetric symbiosis mode, and the growth of the participants and the platforms is more stable and sufficient than that in other modes. The findings will provide additional perspectives to promote the sustainable development of e-commerce platform ecosystem considering the cooperative and competitive effect.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.