基于多模态传感器的非结构化环境昼夜协同动态映射

Yufeng Yue, Chule Yang, Jun Zhang, Mingxing Wen, Zhenyu Wu, Haoyuan Zhang, Danwei W. Wang
{"title":"基于多模态传感器的非结构化环境昼夜协同动态映射","authors":"Yufeng Yue, Chule Yang, Jun Zhang, Mingxing Wen, Zhenyu Wu, Haoyuan Zhang, Danwei W. Wang","doi":"10.1109/ICRA40945.2020.9197072","DOIUrl":null,"url":null,"abstract":"Enabling long-term operation during day and night for collaborative robots requires a comprehensive understanding of the unstructured environment. Besides, in the dynamic environment, robots must be able to recognize dynamic objects and collaboratively build a global map. This paper proposes a novel approach for dynamic collaborative mapping based on multimodal environmental perception. For each mission, robots first apply heterogeneous sensor fusion model to detect humans and separate them to acquire static observations. Then, the collaborative mapping is performed to estimate the relative position between robots and local 3D maps are integrated into a globally consistent 3D map. The experiment is conducted in the day and night rainforest with moving people. The results show the accuracy, robustness, and versatility in 3D map fusion missions.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"53 1","pages":"2981-2987"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Day and Night Collaborative Dynamic Mapping in Unstructured Environment Based on Multimodal Sensors\",\"authors\":\"Yufeng Yue, Chule Yang, Jun Zhang, Mingxing Wen, Zhenyu Wu, Haoyuan Zhang, Danwei W. Wang\",\"doi\":\"10.1109/ICRA40945.2020.9197072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enabling long-term operation during day and night for collaborative robots requires a comprehensive understanding of the unstructured environment. Besides, in the dynamic environment, robots must be able to recognize dynamic objects and collaboratively build a global map. This paper proposes a novel approach for dynamic collaborative mapping based on multimodal environmental perception. For each mission, robots first apply heterogeneous sensor fusion model to detect humans and separate them to acquire static observations. Then, the collaborative mapping is performed to estimate the relative position between robots and local 3D maps are integrated into a globally consistent 3D map. The experiment is conducted in the day and night rainforest with moving people. The results show the accuracy, robustness, and versatility in 3D map fusion missions.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"53 1\",\"pages\":\"2981-2987\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

协作机器人需要对非结构化环境有全面的了解,才能实现昼夜长期运行。此外,在动态环境中,机器人必须能够识别动态物体并协同构建全局地图。提出了一种基于多模态环境感知的动态协同映射方法。对于每次任务,机器人首先应用异构传感器融合模型对人进行检测并分离,获取静态观测数据。然后,进行协同映射以估计机器人之间的相对位置,并将局部3D地图集成到全局一致的3D地图中。实验是在昼夜交替的热带雨林中进行的。结果表明,该方法在三维地图融合任务中具有较高的准确性、鲁棒性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Day and Night Collaborative Dynamic Mapping in Unstructured Environment Based on Multimodal Sensors
Enabling long-term operation during day and night for collaborative robots requires a comprehensive understanding of the unstructured environment. Besides, in the dynamic environment, robots must be able to recognize dynamic objects and collaboratively build a global map. This paper proposes a novel approach for dynamic collaborative mapping based on multimodal environmental perception. For each mission, robots first apply heterogeneous sensor fusion model to detect humans and separate them to acquire static observations. Then, the collaborative mapping is performed to estimate the relative position between robots and local 3D maps are integrated into a globally consistent 3D map. The experiment is conducted in the day and night rainforest with moving people. The results show the accuracy, robustness, and versatility in 3D map fusion missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1