基于dirichlet多项混合模型的短文本聚类方法

Jianhua Yin, Jianyong Wang
{"title":"基于dirichlet多项混合模型的短文本聚类方法","authors":"Jianhua Yin, Jianyong Wang","doi":"10.1145/2623330.2623715","DOIUrl":null,"url":null,"abstract":"Short text clustering has become an increasingly important task with the popularity of social media like Twitter, Google+, and Facebook. It is a challenging problem due to its sparse, high-dimensional, and large-volume characteristics. In this paper, we proposed a collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model for short text clustering (abbr. to GSDMM). We found that GSDMM can infer the number of clusters automatically with a good balance between the completeness and homogeneity of the clustering results, and is fast to converge. GSDMM can also cope with the sparse and high-dimensional problem of short texts, and can obtain the representative words of each cluster. Our extensive experimental study shows that GSDMM can achieve significantly better performance than three other clustering models.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"443","resultStr":"{\"title\":\"A dirichlet multinomial mixture model-based approach for short text clustering\",\"authors\":\"Jianhua Yin, Jianyong Wang\",\"doi\":\"10.1145/2623330.2623715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short text clustering has become an increasingly important task with the popularity of social media like Twitter, Google+, and Facebook. It is a challenging problem due to its sparse, high-dimensional, and large-volume characteristics. In this paper, we proposed a collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model for short text clustering (abbr. to GSDMM). We found that GSDMM can infer the number of clusters automatically with a good balance between the completeness and homogeneity of the clustering results, and is fast to converge. GSDMM can also cope with the sparse and high-dimensional problem of short texts, and can obtain the representative words of each cluster. Our extensive experimental study shows that GSDMM can achieve significantly better performance than three other clustering models.\",\"PeriodicalId\":20536,\"journal\":{\"name\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"443\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2623330.2623715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 443

摘要

随着Twitter、Google+和Facebook等社交媒体的普及,短文本聚类已经成为一项越来越重要的任务。由于其稀疏、高维、大体积的特点,这是一个具有挑战性的问题。本文针对短文本聚类的Dirichlet多项式混合模型(简称GSDMM)提出了一种坍缩的Gibbs抽样算法。我们发现,GSDMM可以自动推断聚类的数量,在聚类结果的完备性和均匀性之间取得很好的平衡,收敛速度快。GSDMM还可以处理短文本的稀疏和高维问题,并可以获得每个聚类的代表词。我们广泛的实验研究表明,GSDMM可以获得明显优于其他三种聚类模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dirichlet multinomial mixture model-based approach for short text clustering
Short text clustering has become an increasingly important task with the popularity of social media like Twitter, Google+, and Facebook. It is a challenging problem due to its sparse, high-dimensional, and large-volume characteristics. In this paper, we proposed a collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model for short text clustering (abbr. to GSDMM). We found that GSDMM can infer the number of clusters automatically with a good balance between the completeness and homogeneity of the clustering results, and is fast to converge. GSDMM can also cope with the sparse and high-dimensional problem of short texts, and can obtain the representative words of each cluster. Our extensive experimental study shows that GSDMM can achieve significantly better performance than three other clustering models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022 KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021 Mutually Beneficial Collaborations to Broaden Participation of Hispanics in Data Science Bringing Inclusive Diversity to Data Science: Opportunities and Challenges A Causal Look at Statistical Definitions of Discrimination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1