S. Srinivasa, A. Ramanathan, Xueqing Li, Wei-Hao Chen, F. Hsueh, Chih-Chao Yang, C. Shen, J. Shieh, S. Gupta, Meng-Fan Chang, Swaroop Ghosh, J. Sampson, N. Vijaykrishnan
{"title":"具有增强鲁棒性和内存计算支持的单片三维SRAM设计","authors":"S. Srinivasa, A. Ramanathan, Xueqing Li, Wei-Hao Chen, F. Hsueh, Chih-Chao Yang, C. Shen, J. Shieh, S. Gupta, Meng-Fan Chang, Swaroop Ghosh, J. Sampson, N. Vijaykrishnan","doi":"10.1145/3218603.3218645","DOIUrl":null,"url":null,"abstract":"We present a novel 3D-SRAM cell using a Monolithic 3D integration (M3D-IC) technology for realizing both robustness and In-memory Boolean logic compute support. The proposed two-layer design makes use of additional transistors over the SRAM layer to enable assist techniques as well as provide logic functions (such as AND/NAND, OR/NOR, XNOR/XOR) without degrading cell density. Through analysis, we provide insights into the benefits provided by three memory assist and two logic modes and evaluate the energy efficiency of our proposed design. Assist techniques improve SRAM read stability by 2.2x and increase the write margin by 17.6%, while staying within the SRAM footprint. By virtue of increased robustness, the cell enables seamless operation at lower supply voltages and thereby ensures energy efficiency. Energy Delay Product (EDP) reduces by 1.6x over standard 6T SRAM with a faster data access. Transistor placement and their biasing technique in layer-2 enables In-memory bitwise Boolean computation. When computing bulk In-memory operations, 6.5x energy savings is achieved as compared to computing outside the memory system.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A Monolithic-3D SRAM Design with Enhanced Robustness and In-Memory Computation Support\",\"authors\":\"S. Srinivasa, A. Ramanathan, Xueqing Li, Wei-Hao Chen, F. Hsueh, Chih-Chao Yang, C. Shen, J. Shieh, S. Gupta, Meng-Fan Chang, Swaroop Ghosh, J. Sampson, N. Vijaykrishnan\",\"doi\":\"10.1145/3218603.3218645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel 3D-SRAM cell using a Monolithic 3D integration (M3D-IC) technology for realizing both robustness and In-memory Boolean logic compute support. The proposed two-layer design makes use of additional transistors over the SRAM layer to enable assist techniques as well as provide logic functions (such as AND/NAND, OR/NOR, XNOR/XOR) without degrading cell density. Through analysis, we provide insights into the benefits provided by three memory assist and two logic modes and evaluate the energy efficiency of our proposed design. Assist techniques improve SRAM read stability by 2.2x and increase the write margin by 17.6%, while staying within the SRAM footprint. By virtue of increased robustness, the cell enables seamless operation at lower supply voltages and thereby ensures energy efficiency. Energy Delay Product (EDP) reduces by 1.6x over standard 6T SRAM with a faster data access. Transistor placement and their biasing technique in layer-2 enables In-memory bitwise Boolean computation. When computing bulk In-memory operations, 6.5x energy savings is achieved as compared to computing outside the memory system.\",\"PeriodicalId\":20456,\"journal\":{\"name\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3218603.3218645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Monolithic-3D SRAM Design with Enhanced Robustness and In-Memory Computation Support
We present a novel 3D-SRAM cell using a Monolithic 3D integration (M3D-IC) technology for realizing both robustness and In-memory Boolean logic compute support. The proposed two-layer design makes use of additional transistors over the SRAM layer to enable assist techniques as well as provide logic functions (such as AND/NAND, OR/NOR, XNOR/XOR) without degrading cell density. Through analysis, we provide insights into the benefits provided by three memory assist and two logic modes and evaluate the energy efficiency of our proposed design. Assist techniques improve SRAM read stability by 2.2x and increase the write margin by 17.6%, while staying within the SRAM footprint. By virtue of increased robustness, the cell enables seamless operation at lower supply voltages and thereby ensures energy efficiency. Energy Delay Product (EDP) reduces by 1.6x over standard 6T SRAM with a faster data access. Transistor placement and their biasing technique in layer-2 enables In-memory bitwise Boolean computation. When computing bulk In-memory operations, 6.5x energy savings is achieved as compared to computing outside the memory system.