{"title":"基于模型空间邻域信息的话语验证新方法","authors":"Hui Jiang, Chin-Hui Lee","doi":"10.1109/TSA.2003.815821","DOIUrl":null,"url":null,"abstract":"We propose to use neighborhood information in model space to perform utterance verification (UV). At first, we present a nested-neighborhood structure for each underlying model in model space and assume the underlying model's competing models sit in one of these neighborhoods, which is used to model alternative hypothesis in UV. Bayes factors (BF) is first introduced to UV and used as a major tool to calculate confidence measures based on the above idea. Experimental results in the Bell Labs communicator system show that the new method has dramatically improved verification performance when verifying correct words against mis-recognized words in the recognizer's output, relatively more than 20% reduction in equal error rate (EER) when comparing with the standard approach based on likelihood ratio testing and anti-models.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"6 1","pages":"425-434"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A new approach to utterance verification based on neighborhood information in model space\",\"authors\":\"Hui Jiang, Chin-Hui Lee\",\"doi\":\"10.1109/TSA.2003.815821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to use neighborhood information in model space to perform utterance verification (UV). At first, we present a nested-neighborhood structure for each underlying model in model space and assume the underlying model's competing models sit in one of these neighborhoods, which is used to model alternative hypothesis in UV. Bayes factors (BF) is first introduced to UV and used as a major tool to calculate confidence measures based on the above idea. Experimental results in the Bell Labs communicator system show that the new method has dramatically improved verification performance when verifying correct words against mis-recognized words in the recognizer's output, relatively more than 20% reduction in equal error rate (EER) when comparing with the standard approach based on likelihood ratio testing and anti-models.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"6 1\",\"pages\":\"425-434\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.815821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.815821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new approach to utterance verification based on neighborhood information in model space
We propose to use neighborhood information in model space to perform utterance verification (UV). At first, we present a nested-neighborhood structure for each underlying model in model space and assume the underlying model's competing models sit in one of these neighborhoods, which is used to model alternative hypothesis in UV. Bayes factors (BF) is first introduced to UV and used as a major tool to calculate confidence measures based on the above idea. Experimental results in the Bell Labs communicator system show that the new method has dramatically improved verification performance when verifying correct words against mis-recognized words in the recognizer's output, relatively more than 20% reduction in equal error rate (EER) when comparing with the standard approach based on likelihood ratio testing and anti-models.