Ali Marstawi, N. Sharef, T. N. M. Aris, A. Mustapha
{"title":"基于本体的面向改进的产品评论摘要情感分析的方面提取","authors":"Ali Marstawi, N. Sharef, T. N. M. Aris, A. Mustapha","doi":"10.1145/3036331.3036362","DOIUrl":null,"url":null,"abstract":"Current approaches in aspect-based sentiment analysis ignore or neutralize unhandled issues emerging from the lexicon-based scoring (i.e., SentiWordNet), whereby lexical sentiment analysis only classifies text based on affect word presence and word count are limited to these surface features. This is coupled with considerably low detection rate among implicit concepts in the text. To address this issues, this paper proposed the use of ontology to i) enhance aspect extraction process by identifying features pertaining to implicit entities, and ii) eliminate lexicon-based sentiment scoring issues which, in turn, improve sentiment analysis and summarization accuracy. Concept-level sentiment analysis aims to go beyond word-level analysis by employing ontologies which act as a semantic knowledge base rather than the lexicon. The outcome is an Ontology-Based Product Sentiment Summarization (OBPSS) framework which outperformed other existing summarization systems in terms of aspect extraction and sentiment scoring. The improved performance is supported by the sentence-level linguistic rules applied by OBPSS in providing a more accurate sentiment analysis.","PeriodicalId":22356,"journal":{"name":"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)","volume":"58 1","pages":"100-104"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Ontology-based Aspect Extraction for an Improved Sentiment Analysis in Summarization of Product Reviews\",\"authors\":\"Ali Marstawi, N. Sharef, T. N. M. Aris, A. Mustapha\",\"doi\":\"10.1145/3036331.3036362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current approaches in aspect-based sentiment analysis ignore or neutralize unhandled issues emerging from the lexicon-based scoring (i.e., SentiWordNet), whereby lexical sentiment analysis only classifies text based on affect word presence and word count are limited to these surface features. This is coupled with considerably low detection rate among implicit concepts in the text. To address this issues, this paper proposed the use of ontology to i) enhance aspect extraction process by identifying features pertaining to implicit entities, and ii) eliminate lexicon-based sentiment scoring issues which, in turn, improve sentiment analysis and summarization accuracy. Concept-level sentiment analysis aims to go beyond word-level analysis by employing ontologies which act as a semantic knowledge base rather than the lexicon. The outcome is an Ontology-Based Product Sentiment Summarization (OBPSS) framework which outperformed other existing summarization systems in terms of aspect extraction and sentiment scoring. The improved performance is supported by the sentence-level linguistic rules applied by OBPSS in providing a more accurate sentiment analysis.\",\"PeriodicalId\":22356,\"journal\":{\"name\":\"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)\",\"volume\":\"58 1\",\"pages\":\"100-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3036331.3036362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3036331.3036362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ontology-based Aspect Extraction for an Improved Sentiment Analysis in Summarization of Product Reviews
Current approaches in aspect-based sentiment analysis ignore or neutralize unhandled issues emerging from the lexicon-based scoring (i.e., SentiWordNet), whereby lexical sentiment analysis only classifies text based on affect word presence and word count are limited to these surface features. This is coupled with considerably low detection rate among implicit concepts in the text. To address this issues, this paper proposed the use of ontology to i) enhance aspect extraction process by identifying features pertaining to implicit entities, and ii) eliminate lexicon-based sentiment scoring issues which, in turn, improve sentiment analysis and summarization accuracy. Concept-level sentiment analysis aims to go beyond word-level analysis by employing ontologies which act as a semantic knowledge base rather than the lexicon. The outcome is an Ontology-Based Product Sentiment Summarization (OBPSS) framework which outperformed other existing summarization systems in terms of aspect extraction and sentiment scoring. The improved performance is supported by the sentence-level linguistic rules applied by OBPSS in providing a more accurate sentiment analysis.