{"title":"测试优先级的学习:一个工业案例研究","authors":"Benjamin Busjaeger, Tao Xie","doi":"10.1145/2950290.2983954","DOIUrl":null,"url":null,"abstract":"Modern cloud-software providers, such as Salesforce.com, increasingly adopt large-scale continuous integration environments. In such environments, assuring high developer productivity is strongly dependent on conducting testing efficiently and effectively. Specifically, to shorten feedback cycles, test prioritization is popularly used as an optimization mechanism for ranking tests to run by their likelihood of revealing failures. To apply test prioritization in industrial environments, we present a novel approach (tailored for practical applicability) that integrates multiple existing techniques via a systematic framework of machine learning to rank. Our initial empirical evaluation on a large real-world dataset from Salesforce.com shows that our approach significantly outperforms existing individual techniques.","PeriodicalId":20532,"journal":{"name":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"Learning for test prioritization: an industrial case study\",\"authors\":\"Benjamin Busjaeger, Tao Xie\",\"doi\":\"10.1145/2950290.2983954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern cloud-software providers, such as Salesforce.com, increasingly adopt large-scale continuous integration environments. In such environments, assuring high developer productivity is strongly dependent on conducting testing efficiently and effectively. Specifically, to shorten feedback cycles, test prioritization is popularly used as an optimization mechanism for ranking tests to run by their likelihood of revealing failures. To apply test prioritization in industrial environments, we present a novel approach (tailored for practical applicability) that integrates multiple existing techniques via a systematic framework of machine learning to rank. Our initial empirical evaluation on a large real-world dataset from Salesforce.com shows that our approach significantly outperforms existing individual techniques.\",\"PeriodicalId\":20532,\"journal\":{\"name\":\"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2950290.2983954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950290.2983954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning for test prioritization: an industrial case study
Modern cloud-software providers, such as Salesforce.com, increasingly adopt large-scale continuous integration environments. In such environments, assuring high developer productivity is strongly dependent on conducting testing efficiently and effectively. Specifically, to shorten feedback cycles, test prioritization is popularly used as an optimization mechanism for ranking tests to run by their likelihood of revealing failures. To apply test prioritization in industrial environments, we present a novel approach (tailored for practical applicability) that integrates multiple existing techniques via a systematic framework of machine learning to rank. Our initial empirical evaluation on a large real-world dataset from Salesforce.com shows that our approach significantly outperforms existing individual techniques.