水文模型的不确定性量化

P. Vallam, X.S. Qin, J.J. Yu
{"title":"水文模型的不确定性量化","authors":"P. Vallam,&nbsp;X.S. Qin,&nbsp;J.J. Yu","doi":"10.1016/j.apcbee.2014.10.042","DOIUrl":null,"url":null,"abstract":"<div><p>Generalized Likelihood Uncertainty Estimation (GLUE), a simplified Bayesian method, was adopted to determine the parametric uncertainty in hydrological modeling. A preliminary analysis of the summer flows of the Kootenay Watershed, Canada, was modeled to portray a typical uncertainty analysis procedure. SLURP, a robust hydrologic model was chosen for this procedure. The results demonstrated the viability of applying the GLUE method in conjunction with the SLURP hydrological model, following which the posterior probability distributions of the parameters was analyzed. The performance of this technique was verified by examining the flows’ prediction intervals for a period of 2 years, enabling valid future hydrological forecasting for the watershed.</p></div>","PeriodicalId":8107,"journal":{"name":"APCBEE Procedia","volume":"10 ","pages":"Pages 219-223"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.apcbee.2014.10.042","citationCount":"8","resultStr":"{\"title\":\"Uncertainty Quantification of Hydrologic Model\",\"authors\":\"P. Vallam,&nbsp;X.S. Qin,&nbsp;J.J. Yu\",\"doi\":\"10.1016/j.apcbee.2014.10.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Generalized Likelihood Uncertainty Estimation (GLUE), a simplified Bayesian method, was adopted to determine the parametric uncertainty in hydrological modeling. A preliminary analysis of the summer flows of the Kootenay Watershed, Canada, was modeled to portray a typical uncertainty analysis procedure. SLURP, a robust hydrologic model was chosen for this procedure. The results demonstrated the viability of applying the GLUE method in conjunction with the SLURP hydrological model, following which the posterior probability distributions of the parameters was analyzed. The performance of this technique was verified by examining the flows’ prediction intervals for a period of 2 years, enabling valid future hydrological forecasting for the watershed.</p></div>\",\"PeriodicalId\":8107,\"journal\":{\"name\":\"APCBEE Procedia\",\"volume\":\"10 \",\"pages\":\"Pages 219-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.apcbee.2014.10.042\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APCBEE Procedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212670814001924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APCBEE Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212670814001924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

采用广义似然不确定性估计(GLUE),即一种简化的贝叶斯方法来确定水文模型中的参数不确定性。对加拿大库特尼流域夏季水流进行了初步分析,模拟了典型的不确定性分析程序。SLURP是一种健壮的水文模型。结果证明了GLUE方法与SLURP水文模型结合应用的可行性,随后分析了参数的后验概率分布。该技术的性能通过检查2年的流量预测间隔得到验证,从而为流域提供有效的未来水文预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncertainty Quantification of Hydrologic Model

Generalized Likelihood Uncertainty Estimation (GLUE), a simplified Bayesian method, was adopted to determine the parametric uncertainty in hydrological modeling. A preliminary analysis of the summer flows of the Kootenay Watershed, Canada, was modeled to portray a typical uncertainty analysis procedure. SLURP, a robust hydrologic model was chosen for this procedure. The results demonstrated the viability of applying the GLUE method in conjunction with the SLURP hydrological model, following which the posterior probability distributions of the parameters was analyzed. The performance of this technique was verified by examining the flows’ prediction intervals for a period of 2 years, enabling valid future hydrological forecasting for the watershed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contents Preface Contents Contents Lactic Acid Production from Repeated-Batch and Simultaneous Saccharification and Fermentation of Cassava Starch Wastewater by Amylolytic Lactobacillus Plantarum MSUL 702
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1