Y. Yamada, M. Satoh, M. Sugi, C. Kodama, A. Noda, M. Nakano, T. Nasuno
{"title":"高分辨率全球非流体静力模式下热带气旋活动和结构对全球变暖的响应","authors":"Y. Yamada, M. Satoh, M. Sugi, C. Kodama, A. Noda, M. Nakano, T. Nasuno","doi":"10.1175/JCLI-D-17-0068.1","DOIUrl":null,"url":null,"abstract":"AbstractWe investigated future changes in tropical cyclone (TC) activity and structure using the outputs of a 14-km mesh climate simulation. A set of 30-year simulations were performed under present-day and warmer climate conditions using a nonhydrostatic icosahedral atmospheric model with explicitly calculated convection. The model projected that the global frequency of TCs is reduced by 22.7%, the ratio of intense TCs is increased by 6.6%, and the precipitation rate within 100 km of the TC center increased by 11.8% under warmer climate conditions. These tendencies are consistent with previous studies using hydrostatic global model with cumulus parameterization.The responses of vertical and horizontal structures to global warming are investigated for TCs with the same intensity categories. For TCs whose minimum sea-level pressure (SLP) reaches less than 980 hPa, the model predicted that tangential wind increases in the outside region of the eyewall. Increases in the tangential wind are related to the ele...","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Response of tropical cyclone activity and structure to a global warming in a high-resolution global nonhydrostatic model\",\"authors\":\"Y. Yamada, M. Satoh, M. Sugi, C. Kodama, A. Noda, M. Nakano, T. Nasuno\",\"doi\":\"10.1175/JCLI-D-17-0068.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractWe investigated future changes in tropical cyclone (TC) activity and structure using the outputs of a 14-km mesh climate simulation. A set of 30-year simulations were performed under present-day and warmer climate conditions using a nonhydrostatic icosahedral atmospheric model with explicitly calculated convection. The model projected that the global frequency of TCs is reduced by 22.7%, the ratio of intense TCs is increased by 6.6%, and the precipitation rate within 100 km of the TC center increased by 11.8% under warmer climate conditions. These tendencies are consistent with previous studies using hydrostatic global model with cumulus parameterization.The responses of vertical and horizontal structures to global warming are investigated for TCs with the same intensity categories. For TCs whose minimum sea-level pressure (SLP) reaches less than 980 hPa, the model predicted that tangential wind increases in the outside region of the eyewall. Increases in the tangential wind are related to the ele...\",\"PeriodicalId\":14836,\"journal\":{\"name\":\"Japan Geoscience Union\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Geoscience Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/JCLI-D-17-0068.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Geoscience Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JCLI-D-17-0068.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Response of tropical cyclone activity and structure to a global warming in a high-resolution global nonhydrostatic model
AbstractWe investigated future changes in tropical cyclone (TC) activity and structure using the outputs of a 14-km mesh climate simulation. A set of 30-year simulations were performed under present-day and warmer climate conditions using a nonhydrostatic icosahedral atmospheric model with explicitly calculated convection. The model projected that the global frequency of TCs is reduced by 22.7%, the ratio of intense TCs is increased by 6.6%, and the precipitation rate within 100 km of the TC center increased by 11.8% under warmer climate conditions. These tendencies are consistent with previous studies using hydrostatic global model with cumulus parameterization.The responses of vertical and horizontal structures to global warming are investigated for TCs with the same intensity categories. For TCs whose minimum sea-level pressure (SLP) reaches less than 980 hPa, the model predicted that tangential wind increases in the outside region of the eyewall. Increases in the tangential wind are related to the ele...